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networks.

•	 Explores methodologies for evaluating the quality and accuracy of com-
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Preface
The dynamic field of community structure analysis has become increasingly vital in 
comprehending the complexities of social and other real-world networks. This book 
explores the latest advancements and challenges in community detection and their 
applications across various domains, including biological systems, online social 
networks, and pandemic preparedness.

The book is organized into three sections. The first section focuses on the 
foundational elements of social network analysis, exploring dataset characteristics, 
challenges in data representation, and comparisons of open dataset repositories. It 
also highlights various strategies for analyzing and interpreting social networks, 
providing insights into their types, applications, and analytical challenges.

The second section focuses on methodologies and techniques for community 
detection. It delves into graph clustering, semi-supervised learning, and deep learn-
ing approaches, providing readers with an in-depth understanding of structure and 
dynamics. These chapters also offer a comparative perspective on classical and 
modern techniques, shedding light on their strengths and applications.

The final section emphasizes the practical applications of community detection. 
From identifying influential nodes and detecting implicit communities to managing 
pandemics and detecting plagiarism, the book underscores the versatility of com-
munity structure analysis in solving real-world challenges. It also explores the role 
of connected communities in pandemic preparedness and the use of overlapping 
community detection to identify spread blockers.

By presenting these topics in a structured and comprehensive manner, this book 
serves as a valuable resource for researchers, professionals, and students. It addresses 
critical aspects of social and complex networks, ranging from foundational theories 
to state-of-the-art applications, ensuring a detailed understanding of the field.
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1

Deciphering Social 
Networks
Types, Applications, and 
Analytical Challenges

Bazila Farooq and Ankush Manocha

1.1 � INTRODUCTION

Social networks refer to the interconnected structures made up of individuals or 
organizations, connected by various social relationships such as friendships, profes-
sional ties, or shared interests. These networks show how resources, influence, and 
information flow both within and across groups, making them crucial for under-
standing social dynamics [1]. One may learn more about how ideas spread, social 
norms are formed, and individual and group behavior by looking at these link-
ages. Social networks are crucial across various societal sectors, including business 
strategies, public health initiatives, and political campaigns, due to their capacity 
to reveal interaction and influence patterns that significantly affect outcomes [2]. 
Social network analysis (SNA), the study of these networks, has a long history that 
dates back to the early 1900s [3]. Pioneering sociologists such as Georg Simmel 
and Jacob Moreno laid the foundation for this field. Georg Simmel introduced the 
concept of studying the structure of social relationships systematically in the early 
1900s [4]. His work emphasized the importance of social forms and the patterns 
of interaction that define social life. Simmel’s insights into the dynamics of dyads 
(two-person groups) and triads (three-person groups) highlighted how the structure 
of a network influences individual behavior and social phenomena. Jacob Moreno 
further advanced the field in the 1930s by developing sociometry, a method for mea-
suring social relationships [5]. Significant contributions from various disciplines, 
including anthropology, psychology, and mathematics, have further enriched SNA. 
For example, Claude Fischer’s studies on personal networks in urban settings and 
Linton C. Freeman’s exploration of the development of SNA as a scientific disci-
pline have been instrumental in shaping contemporary understandings of social 
networks [6, 7]. The advent of powerful computing technologies and the internet in 
the late 20th century greatly accelerated the development of SNA. These advance-
ments have enabled the analysis of large-scale networks with complex structures, 
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allowing researchers to explore intricate social dynamics and patterns of influence 
more effectively. Today, SNA employs advanced algorithms and sophisticated data 
analytics to delve into the complex web of social connections, providing insights 
that are crucial in our increasingly interconnected world [8]. In summary, the his-
torical context of SNA is marked by foundational contributions from early soci-
ologists and the integration of interdisciplinary research, culminating in a vibrant 
and dynamic field that continues to evolve with technological advancements. Social 
network analysis (SNA) has evolved significantly over time, with notable contri-
butions from disciplines such as anthropology, psychology, and mathematics. The 
field experienced major advancements in the late 20th century due to the rise of 
the internet and advanced computer technology, enabling the analysis of complex, 
large-scale networks. SNA is a vibrant, multidisciplinary area that studies the com-
plex web of social interactions using cutting-edge algorithms and sophisticated data 
analytics [9]. This exploration is crucial in our increasingly interconnected world, 
where understanding these networks can illuminate patterns of influence, infor-
mation flow, and group dynamics. SNA’s ability to map and analyze relationships 
has broad applications, from improving organizational efficiency to enhancing 
public health initiatives and informing policy decisions. Human connectivity has 
transformed dramatically in the digital age, with online social networks playing an 
increasingly vital role in our civic, professional, and personal lives. Social media 
sites like Facebook, X, and LinkedIn have developed into important forces shaping 
social relationships and institutions, going beyond just being platforms for commu-
nication. Trust is a complex yet important characteristic in these digital arenas that 
influences the emergence, growth, and longevity of online interactions. The concept 
of trust in digital environments is complex and encompasses judgments about the 
dependability, honesty, and skill of users as well as the platform itself. It is closely 
related to the ethical management of shared knowledge and expectations of recipro-
cal behavior. Even after a great deal of research on online communities, it is still 
unclear exactly how trust is established, preserved, and eroded in these settings, as 
illustrated in Figure 1.1. Interdisciplinary research has great potential and difficulty 
in filling this gap [10]. Through the integration of sophisticated machine-learning 
techniques with social science perspectives, researchers can begin to decipher these 
mechanisms. To develop tactics that promote stronger and more resilient digital 
communities, it is essential to understand how trust operates on the internet. This 
involves addressing problems that might undermine trust and jeopardize the integ-
rity of digital interactions, such as privacy, disinformation, and online deceit. The 
insights gained from social network analysis and trust research will be crucial for 
creating environments that foster significant and trustworthy interactions as online 
platforms continue to develop [11].

1.2 � LITERATURE REVIEW

Numerous academic fields have studied trust, emphasizing its importance in both 
private and public spheres. The significance of trust in digital economic activities 
has been highlighted by economists such as Arrow, who have highlighted its role 
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as a crucial enabler of economic transactions by lowering market friction. This 
idea applies equally to online transactions and interactions [12]. Rotter and other 
psychologists have studied how individual behavior and cognition shape views of 
trust, and their findings indicate that human relationships are greatly impacted by 
one’s ability to be trusted. This dynamic is particularly significant in online environ-
ments since digital personas and interactions influence how these views are formed. 
Sociologists have integrated trust into the larger framework of societal institutions, 
highlighting its essential role in facilitating social cohesion and encouraging coop-
erative behavior [13]. A thorough basis for comprehending social trust is offered by 
Coleman’s research [14]. Furthermore, theories like Burt’s “structural holes” and 
Granovetter’s “strength of weak ties” provide important insights into the complexi-
ties of trust in digital environments by implying that indirect relationships within 
network structures significantly impact on the development of trust and the exchange 
of information online [15, 16]. The emergence of social networks throughout the dig-
ital revolution has completely changed how people connect and brought about new 
dynamics in the building and maintenance of trust. Due to the expansion of social 
circles and the quickening of connection creation brought about by these platforms, 
building and sustaining trust in the absence of conventional face-to-face indicators 
present unique challenges. As Donath noted, the significance of online identities 
and reputation systems in trust dynamics has grown. These factors impact on how 
people portray themselves online and are seen by others, which in turn affects how 
much confidence is placed in them [17]. Existing research has major limitations, 
even though fundamental work across disciplines provides a sound framework for 
understanding trust. Economic models of trust frequently oversimplify the social 

FIGURE 1.1  Process of social network analysis.
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and psychological nuances of interpersonal trust in digital interactions, concen-
trating primarily on transactional aspects [18]. Comparably, even though they are 
insightful, psychological and sociological research usually focuses on conventional 
face-to-face settings, which could not completely transfer to online settings where 
cues and interactions are very different [19].

1.3 � TYPES OF SOCIAL NETWORKS

Social networks can be categorized based on the nature of connections they facili-
tate, such as personal relationships, professional ties, or digital interactions, and are 
depicted in Figure 1.2. These networks are essential for emotional support, career 
development, and modern communication [20]. Additionally, community networks 
foster social cohesion and collective action within specific groups or localities. 
Different types are mentioned one by one.

	 1.	Personal Networks: Personal networks revolve around an individual and 
emphasize their relationships. These networks, which offer mental assis-
tance, company, and a sense of belonging, are made up of family, friends, 
and intimate acquaintances. Personal networks are crucial for individual 
well-being, providing a basis for social interaction and emotional security 
[21]. They play a crucial role in shaping one’s identity and social skills, as 
these relationships are often intimate and long-lasting [22]. The strength of 
personal networks lies in their depth and the quality of connections, which 
foster trust, loyalty, and mutual support.

FIGURE 1.2  Types of social network analysis.
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	 2.	Professional Networks: Professional networks are centered around work-
related connections and are critical for career development, job opportuni-
ties, and professional growth. These networks include colleagues, mentors, 
industry peers, and professional associations. By engaging in professional 
networks, individuals can access valuable resources, knowledge, and 
opportunities that can enhance their careers [23]. Networking events, con-
ferences, and social media platforms like LinkedIn facilitate the building 
and maintaining of these connections. Professional networks often empha-
size mutual benefits, where individuals share expertise, provide referrals, 
and collaborate on projects to advance their careers [24].

	 3.	Online Social Networks: Online social networks are digital platforms 
that facilitate social interaction and communication over the internet. 
Platforms such as Facebook, X, LinkedIn, and Instagram have revolu-
tionized modern communication by enabling users to connect with oth-
ers globally. These networks allow for the rapid sharing of information, 
ideas, and media, and have become integral to personal and professional 
life. Online social networks can amplify the reach of one’s personal and 
professional networks, provide platforms for self-expression, and foster 
virtual communities around shared interests [25]. However, they also pose 
challenges such as privacy concerns, misinformation, and the potential for 
superficial connections.

	 4.	Community Networks: Community networks consist of social connec-
tions within specific communities, such as neighborhoods, interest groups, 
or social collectives. These networks are vital for fostering a sense of com-
munity, civic engagement, and collective action. Community networks can 
be geographically based, such as those in local neighborhoods, or interest-
based, such as hobbyist groups, volunteer organizations, or cultural asso-
ciations. They provide a platform for individuals to collaborate on common 
goals, support local initiatives, and enhance the overall quality of life 
within the community [26]. Community networks strengthen social cohe-
sion, encourage civic responsibility, and create a supportive environment 
where members can rely on each other.

1.4 � APPLICATIONS OF SOCIAL NETWORK ANALYSIS

Social network analysis (SNA) is used to explore and understand the intricate pat-
terns of relationships and interactions within networks. By mapping and analyz-
ing these connections, SNA helps identify key influencers, detect communities, and 
understand information flow. It leverages advanced algorithms and data analytics 
to provide insights into social structures, enhancing our comprehension of social 
dynamics, organizational behavior, and the spread of ideas [27]. Social network 
analysis (SNA) offers valuable insights across various fields by examining the pat-
terns and structures of relationships within networks, as illustrated in Figure 1.3. 
These applications span from enhancing organizational efficiency to understanding 
social behaviors and improving public health.



8 Community Structure Analysis from Social Networks

	 1.	Organizational Analysis: SNA is used to understand communication and 
collaboration within organizations. By mapping employee interactions, it 
identifies key influencers, potential bottlenecks, and areas for improving 
information flow [28]. This helps in optimizing team structures, enhancing 
productivity, and fostering innovation.

	 2.	Marketing and Consumer Behavior: In marketing, SNA helps in identify-
ing influential customers who can impact others’ purchasing decisions. By 
examining social media interactions and customer networks, businesses 
can customize marketing strategies, enhance customer targeting, and boost 
brand loyalty through word-of-mouth promotion [29].

	 3.	Public Health: SNA is instrumental in public health for tracking the spread 
of diseases and understanding health behaviors. It helps identify how dis-
eases propagate through social networks, enabling better-targeted inter-
ventions and more effective public health strategies [30]. It also aids in 
understanding the social determinants of health by analyzing how social 
connections influence health outcomes.

	 4.	Criminal Networks: Law enforcement agencies use SNA to analyze crimi-
nal networks. By mapping out the connections between individuals involved 
in criminal activities, SNA helps in identifying key players, understanding 
the structure of criminal organizations, and disrupting illegal activities [31].

	 5.	Education: In educational settings, SNA is applied to study student interac-
tions and collaboration patterns. It helps in identifying students who are 
isolated or at risk, improving peer support networks, and enhancing overall 
educational outcomes through better-designed group activities and support 
systems [32].

FIGURE 1.3  Illustration of social network analysis.
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	 6.	Political Science: SNA is used to analyze political networks, including rela-
tionships between politicians, lobbying groups, and constituents. It helps in 
understanding power dynamics, coalition building, and the spread of politi-
cal ideas and movements [33].

	 7.	Community Development: SNA aids in community development by map-
ping out social ties within communities. It identifies key community 
leaders, assesses the effectiveness of community programs, and helps in 
building stronger, more cohesive communities by enhancing social capital 
and trust [34].

By leveraging SNA, researchers and practitioners can gain deeper insights into com-
plex social structures, optimize strategies across various domains, and foster more 
effective and cohesive interactions within networks.

1.5 � ANALYTICAL TECHNIQUES IN SOCIAL NETWORK ANALYSIS

Through social network analysis (SNA), analytical methods enable academics to 
explore and comprehend the dynamics and structure of social networks. These tech-
niques measure interactions, identify important nodes, and understand the general 
topology of the network by employing a variety of metrics and techniques. Analysts 
can evaluate the degree of connectedness, identify subgroups within the network, 
and ascertain the importance of particular players by utilizing metrics like central-
ity, density, and clustering. To fully comprehend social interactions and their reper-
cussions, complex network data must be interpreted with the use of statistical models 
and visualization tools [35]. SNA examines the dynamics and structure of social 
networks using a wide range of analytical tools, assisting in the discovery of con-
nections and patterns that provide important insights into the actions and impacts 
of both people and organizations. In social network analysis (SNA), nodes (actors) 
represent entities such as individuals, organizations, or groups, while edges (ties or 
links) represent the relationships or interactions between these entities. Nodes can 
vary in type and may have attributes like demographic information, roles, activity 
levels, or influence. Edges can be directed (one-way) or undirected (mutual), and 
may be weighted to indicate the strength or frequency of interactions. They can 
also be temporal, reflecting dynamic changes over time, or multiplex, representing 
multiple types of relationships between the same nodes. Attributes of edges, such as 
the type of relationship, interaction frequency, duration, and strength of ties, provide 
deeper insights into the nature of connections within the network, helping to analyze 
influence, information flow, and network dynamics comprehensively.

	 1.	Centrality Measures: Centrality metrics pinpoint the most significant or 
influential nodes within a network. Degree centrality quantifies the num-
ber of direct connections a node possesses, reflecting its level of activity. 
Betweenness centrality gauges the extent to which a node resides on the 
shortest paths between other nodes, underscoring its function as a bridge 
or gatekeeper. Closeness centrality measures a node’s proximity to all other 
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nodes in the network, indicating its capacity for rapid interaction with oth-
ers. Eigenvector centrality assesses a node’s influence based on the impor-
tance of its neighbors’ connections, highlighting its overall significance 
within the network [36].

	 2.	Density: Density measures the proportion of possible connections in a net-
work that are actual connections. A high-density network indicates a high 
level of interconnectedness, which can facilitate rapid information flow but 
may also lead to redundancy [37].

	 3.	Clustering Coefficient: The clustering coefficient measures the degree to 
which nodes in a network tend to cluster together. It indicates the likelihood 
that a node’s neighbors are also connected, reflecting the presence of tightly 
knit groups or communities within the network [38].

	 4.	Community Detection: Community detection techniques identify subgroups 
or clusters within a network where nodes are more densely connected than 
to the rest of the network [39]. Methods such as modularity optimization 
and hierarchical clustering help in uncovering these communities, which 
can reveal important social structures and functional groupings.

	 5.	Network Visualization: Visualization tools create graphical representations 
of networks, making it easier to identify patterns, clusters, and key nodes 
[40]. Tools like Gephi, Pajek, and Cytoscape offer various visualization 
options that can highlight different aspects of the network structure.

	 6.	Path Analysis: Path analysis examines the paths between nodes, including 
the shortest path (geodesic distance) and other possible routes [41]. This 
analysis helps in understanding the efficiency of information flow and the 
role of specific nodes in facilitating communication within the network.

	 7.	Structural Equivalence: Structural equivalence measures the similarity 
between nodes based on their connections to other nodes. Structurally 
equivalent nodes have similar patterns of ties and can often be substituted 
for one another in terms of their role in the network [42]. By applying these 
analytical techniques, SNA provides a comprehensive toolkit for explor-
ing and understanding the intricate web of social connections, enabling 
researchers to uncover the underlying principles that govern social interac-
tions and network dynamics.

1.6 � CHALLENGES IN SOCIAL NETWORK ANALYSIS

Challenges in social network analysis (SNA) are multifaceted and rooted in the 
intricate nature of social networks. One significant hurdle is encountered during the 
data collection phase, where obtaining comprehensive and reliable data about social 
connections proves daunting [43]. The sheer volume of information, coupled with 
concerns about data quality and privacy, complicates this process. Additionally, rep-
resenting real-world social interactions in a network format poses challenges [44]. 
Capturing the depth and context of relationships accurately, especially in dynamic or 
multi-layered networks, requires careful consideration and methodological rigor [45]. 
Furthermore, interpreting network structures and dynamics presents another layer of 
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complexity[46]. Networks may exhibit varying patterns and meanings depending on 
the context and analytical approach employed. This necessitates a nuanced under-
standing and thoughtful interpretation of the data to draw accurate conclusions. 
Dealing with missing or incomplete data adds further complexity to the analysis, 
requiring researchers to employ techniques for data imputation or adjustment [47]. 
Addressing biases inherent in the data, such as sampling biases or response biases, 
is also crucial to ensure the validity and reliability of findings. Ethical concerns sur-
rounding SNA, such as protecting the privacy and confidentiality of participants, 
further compound the challenges faced by researchers [48]. Navigating these ethical 
considerations requires careful adherence to ethical guidelines and principles, as 
well as transparent communication with participants about the purpose and potential 
implications of the study [49]. Despite these obstacles, overcoming them is essen-
tial for advancing our understanding of social networks and deriving meaningful 
insights that can inform various fields, including sociology, psychology, anthropol-
ogy, and beyond [50]. By addressing these challenges with diligence and innova-
tion, researchers can unlock the full potential of SNA to shed light on the complex 
dynamics of social interactions and networks.

1.7 � CASE STUDIES AND EXAMPLES

Case studies demonstrate the diverse applications and significant impact of social 
network analysis (SNA) across various domains and are depicted in Table 1.1. In 
corporate settings, SNA is utilized to analyze email communication networks, iden-
tifying key influencers and communication bottlenecks within an organization. By 
mapping the flow of information and interactions among employees, SNA can reveal 
how information is disseminated, pinpoint areas where communication is stalled, 
and highlight influential employees who either facilitate or hinder the flow of infor-
mation [51]. This insight helps organizations optimize communication strategies, 
enhance collaboration, and improve overall efficiency. For example, a case study 
of a large technology firm might reveal high internal communication within certain 
departments but poor inter-departmental links, leading to inefficiencies. Addressing 
these issues can foster better cross-departmental collaboration and innovation. In 
public health, SNA is pivotal for tracking the spread of infectious diseases within 
communities [52]. By examining social networks and patterns of contact between 
individuals or groups, researchers can identify high-risk clusters and develop tar-
geted interventions to mitigate disease spread. During an outbreak like COVID-19, 
SNA helps public health officials understand how the disease spreads through differ-
ent social groups and settings, allowing for targeted public health measures such as 
isolating specific clusters or enhancing contact tracing efforts, ultimately controlling 
the spread more effectively. In the realm of social media, SNA is employed to study 
the diffusion of information and the formation of online communities on platforms 
like X and Facebook. Researchers analyze the structure of these networks to under-
stand trends, influence patterns, and the spread of misinformation [53]. SNA can iden-
tify influential users who act as hubs for information dissemination, helping amplify 
messages or spread misinformation. Understanding these dynamics is crucial for 
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developing strategies to promote accurate information and combat fake news. For 
instance, a case study might involve analyzing how a viral tweet spreads across dif-
ferent communities and identifying key retweeters that significantly boost its reach 
[54]. In urban planning, SNA is applied to analyze transportation networks or social 
ties within neighborhoods. Researchers might use SNA to identify key transportation 
hubs critical for efficient urban mobility or understand patterns of social interaction 
influencing community cohesion and resilience [55]. Analyzing these networks helps 
urban planners design more efficient and resilient cities. For example, a study might 
reveal that certain neighborhoods have strong internal social ties but are poorly con-
nected to other city parts, guiding investments in infrastructure to improve connec-
tivity and support economic and social integration [56]. Interdisciplinary research 
opportunities further expand SNA’s impact, such as in cybersecurity, where SNA 
helps identify network vulnerabilities and understand malicious entity behavior, 
enabling threat prediction and mitigation [57]. Technological advancements in arti-
ficial intelligence (AI) and machine learning are transforming SNA by automating 
data collection, network visualization, and pattern recognition, enhancing scalability 
and efficiency. However, as SNA delves deeper into personal data, ethical consider-
ations regarding privacy and confidentiality become critical, requiring researchers 
to adhere to ethical guidelines, obtain informed consent, and communicate transpar-
ently with participants about the study’s purpose and implications. Looking ahead, 
SNA will likely explore novel applications and adapt analytical techniques to keep 
pace with technological and societal changes. This includes developing methods to 
handle large-scale and complex network data, improving algorithms for more accu-
rate analysis, and continuously updating ethical standards to protect privacy and 
data integrity [58]. By addressing these challenges and leveraging new technolo-
gies, SNA can unlock deeper insights into the complex web of social interactions, 
contributing to advancements across various fields and enhancing our understanding 
of social dynamics in an interconnected world. These examples illustrate how SNA 
can uncover hidden patterns and relationships within complex systems, informing 
decision-making and driving positive change across diverse fields. ​

1.8 � FUTURE DIRECTIONS

Social network analysis (SNA) is shaped by technological advancements and emerg-
ing trends that influence the field’s development and application.

	 1.	Technological Advancements: The integration of artificial intelligence 
(AI) and machine learning techniques is poised to revolutionize SNA [64]. 
AI algorithms can enhance the scalability and efficiency of network analy-
sis by automating tasks such as data collection, network visualization, and 
pattern recognition [65]. Real-time social interaction monitoring and pre-
dictive analytics are made possible by machine learning algorithms, which 
offer new insights into network dynamics [66]. Additionally, developments 
in natural language processing and data mining allow scholars to extract 
meaningful information from unstructured data sources, such as posts on 
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social media and online forums, expanding the scope of social network 
analysis (SNA) [67].

	 2.	Emerging Trends: The field of social network analysis (SNA) is experi-
encing rapid growth, driven by technological advancements and the emer-
gence of new applications. This evolution is marked by expanding areas 
of application and increased interdisciplinary research opportunities. With 
the proliferation of digital platforms, there is heightened interest in study-
ing virtual communities and online collaboration networks. Researchers 
analyze how individuals interact, how information spreads, and how 
online communities form and evolve. Platforms such as X, Facebook, and 
LinkedIn provide valuable datasets that allow for the study of information 
diffusion, the creation of social ties, and the impact of network structures 
on behavior [68]. Additionally, the intersection of SNA with fields like pub-
lic health, cybersecurity, and smart cities offers promising opportunities for 
cross-disciplinary research. For instance, in public health, SNA is utilized 
to monitor the spread of infectious diseases, identify high-risk populations, 
and design targeted interventions, offering crucial insights into disease 
transmission dynamics and the influence of social behaviors on health out-
comes. In cybersecurity, SNA helps detect potential vulnerabilities in net-
work structures and understand the behavior of malicious actors, enabling 
the prediction and mitigation of cyber threats [69]. In urban planning, SNA 
is applied to optimize transportation networks, boost community resilience, 
and enhance public services, thereby aiding city planners in making data-
driven decisions that improve urban living conditions. Advancements in 
artificial intelligence (AI) and machine learning are significantly trans-
forming SNA by streamlining data collection, network visualization, and 
pattern recognition, thus improving the scalability and efficiency of network 
analysis. Machine learning models offer predictive insights into network 
dynamics, facilitating real-time monitoring and forecasting of social inter-
actions. Additionally, data mining and natural language processing technol-
ogies allow researchers to extract valuable insights from unstructured data 
sources, such as social media posts and online forums, thereby enhanc-
ing the analysis with new data dimensions [70]. However, as SNA explores 
deeper into personal and sensitive data, ethical considerations become 
increasingly paramount. Ensuring participant privacy and confidentiality 
poses a significant challenge, requiring strict adherence to ethical guide-
lines, obtaining informed consent, and maintaining clear communication 
with participants regarding the purpose and potential implications of the 
studies. Addressing these ethical concerns is essential to uphold trust and 
integrity in research practices. Looking ahead, the future of SNA is likely 
to involve exploring new applications and adapting analytical techniques to 
keep pace with technological and societal changes. This includes develop-
ing methods to handle large-scale and complex network data, improving 
algorithms for more accurate and meaningful analysis, and continuously 
updating ethical standards to protect participant privacy and data integrity. 
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By overcoming these challenges and leveraging new technologies, SNA can 
provide deeper insights into the intricate web of social interactions, thereby 
contributing to advancements in various fields and enhancing our under-
standing of social dynamics in an interconnected world [71].

1.9 � CONCLUSION

In summary, the field of social network analysis (SNA) is on the cusp of signifi-
cant progress propelled by technological advancements and evolving trends. The 
incorporation of artificial intelligence (AI) and machine learning into SNA meth-
odologies offers a pathway to streamline analysis processes and extract deeper 
insights from the intricate fabric of social networks. With the continuous evolu-
tion of social networks fueled by the proliferation of online platforms and digi-
tal interactions, SNA is poised to explore new frontiers in understanding human 
behavior and interaction patterns. This includes delving into areas such as virtual 
communities, online collaboration dynamics, and the dissemination of informa-
tion in digital spaces. However, alongside these opportunities, it is imperative to 
remain vigilant about ethical considerations surrounding data privacy, consent, and 
responsible data usage. By fostering interdisciplinary collaboration and harness-
ing the power of cutting-edge technologies, SNA is positioned not only to advance 
academic understanding but also to make meaningful contributions to addressing 
complex societal challenges. Through these efforts, SNA can play a pivotal role in 
deepening our comprehension of social dynamics and facilitating positive change 
in diverse domains, from healthcare to urban planning, paving the way for a more 
connected and informed society.
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Representation, and Analysis

Irshad A. Mir, Zarka Malik, and Tazeem Zainab

2.1 � INTRODUCTION

A social network is a structured representation of the social actors (nodes) and their 
interconnections (ties) to form social groups that share common interests (Arif et 
al., 2012). These networks represent complex web relationships between individu-
als, groups, or organizations. The Digital 2024 Global Overview Report published 
in January 2024 reveals that there are more than 5 billion active social media user 
entities, with the global total touching 5.04 billion at the start of 2024. A social net-
work connects these social media users by providing online platforms for content 
creation and interactions. Web 2.0 and social networks are intertwined concepts that 
represent a paradigm shift in how the Internet is used by people to communicate and 
interact (Arif et al., 2014).

Social network analysis (SNA) entails the study of the patterns and behavior of 
various social networks to gain insightful information. It helps in understanding 
the dependencies between social entities in the data, characterizing their behavior 
and their effect on the network as a whole and over time (Tabassum, Shazia et al., 
2018). SNA relies on the use of mathematical and/or computational models that draw 
heavily on graphic imagery (Freeman, 2004). Very similar to social media analy-
sis, social network analysis encompasses three main stages: capture, understand, 
and process, known as the CUP framework (Fan and Gordon, 2014). The first step 
involves the collection of historical and real-time data from various heterogeneous 
online sources. The understanding phase involves in-depth analytics of the captured 
data requiring high computational and storage facilities (Batrinca and Treleaven, 
2015). Lastly, the process phase includes interpretation and visualization of the final 
data required for the specific purpose.
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2.2 � BACKGROUND OF SOCIAL NETWORKS

2.2.1 � History

Social networking analysis (SNA) has a rich history spanning multiple domains, 
evolving from early sociological and psychological concepts to more advanced fields 
integrating mathematics, computer sciences, and social sciences.

Some renowned scholars provided the early frameworks for analyzing social 
relationships and structures that later helped in the development of the more formal-
ized and advanced science of social networking analysis (SNA).

The leading among them was Émile Durkheim (1858–1917), a key figure in 
sociology who explored the structures of social relationships and these theories laid 
the foundational concepts for understanding social structures.

Another leading scholar during this era was Max Weber (1864–1920), whose work 
mainly focused on social action and the role of social structures in shaping individ-
ual behavior. His concepts of bureaucracy, authority, and rationalization provided 
insights into how social structures and relationships influence social organizations.

The third leading scholar in this area was George Simmel (1858–1918), who con-
ducted extensive work on social circles and the impact of social relationships on indi-
vidual identity, which proved to be very impactful in developing network theories 
(Zhang M, 2010).

2.2.2 � Key Developments

	 1.	Jacob Moreno (1930s–1940s): A pioneer of social network analysis, aimed 
to both measure and illustrate social relations, referring to his work as 
“sociometry” and the drawings as “sociogram”. He explored the structure 
and dynamics of social networks in groups (John Scott, 2012).

	 2.	Harrison White: A breakthrough was made in the 1960s when Harrison 
and his colleagues Lorrain and White formalized network theory and struc-
ture analysis by applying mathematical and statistical methods to social 
networks. They developed algebraic and mathematical methods and took 
advantage of advances in computing to undertake matrix rearrangements 
for large-scale social networks.

	 3.	Mark Granovetter: A prominent sociologist known for his paper published 
in 1973 titled “The strength of weak ties” that depicted that weak ties or 
less intimate connections are very important for accessing new information 
and opportunities. He conducted an in-depth study on how social networks 
affect economic behavior. By introducing the concept of embeddedness, 
Granovetter gave the idea that economic actions are deeply embedded in 
social relations (MS Granovetter, 1973).

	 4.	Linton Freeman: The 1970s–1980s saw an era of methodological innova-
tions, during which quantitative methods including measures of centrality 
such as degree centrality, betweenness centrality and closeness centrality 
were developed and refined by Freeman. This shift led to more precise and 
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scalable analysis allowing rigorous statistical methods to be employed in 
social network data.

	 5.	Steve Borgatti and Martin Everett: During the 1990s UCINET, a com-
prehensive software package for social network analysis was developed by 
them. This and other computational tools like Pajek, Gephi, etc., revolu-
tionized SNA by providing sophisticated algorithms for visualization and 
analysis of complex networks. These tools and many more have helped 
researchers to work on large data sets, analyzing their patterns and visual-
ize the network structure in insightful ways.

2.2.3 �P resent Scenario

Since the 2000s, the fusion of social network analysis (SNA) with big data and social 
media has revolutionized the field, resulting in major advancements in the collection, 
analysis, and application of network data. The rise of social networking platforms 
like X, Facebook, Instagram, LinkedIn, etc., have become a source of rich data sets 
for researchers and analysts to access detailed information about user connections, 
interactions, and behaviors. The storage, processing, and analysis of this large-scale 
data using technologies like Hadoop and Spark provides a more comprehensive and 
detailed network analysis. This integration has yielded new insights across a range 
of fields, namely marketing, epidemiology, political science, economics, organiza-
tional behavior, social sciences, cyber security, and education. It is safe to say that 
currently, social network analysis (SNA) has advanced into a sophisticated discipline 
driven by technological advancements and the availability of large-scale data.

2.3 � REPRESENTATION OF SOCIAL NETWORKS 
AND THEIR ANALYSIS

Representation of social network data is the key to visualize and analyze the social 
networks. A good representation method is vital for modeling the complex relation-
ships of social structures and makes the job of analysis easy. Figure 2.1 depicts the 
various methods for the representation of social networks.

Among the methods presented below the graph-based and matrix-based meth-
ods are the most common methods used for the representation of social networks. 
The following sections present the basic understanding of each of representation 
methods.

FIGURE 2.1  Types of representation methods.
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2.4 � GRAPH-BASED REPRESENTATION

The graph and matrices-based representation method is the most common and 
widely used for the representation of social networks (Arif et al., 2012). The rela-
tionships among the social actors are represented using the edges of the graphs and 
can be easily transformed into matrices for mathematical modeling and analysis. 
In the graphical representation, the basic elements, that is, vertices and edges are 
used to represent the social actors and the relationship among them, respectively. 
As depicted in Figure 2.2, the graph formed of such actor and their relationships are 
referred to as sociograms in which labeled nodes represent the actors and an edge 
between these labeled nodes represents a social tie between the actors.

Before dwelling on further discussion, it is worth to introduce some basic termi-
nologies and definitions related to the graph-based representation.

2.4.1 � Definitions

2.4.1.1 � Actor
In social network representation, a node or vertex is known as an actor that repre-
sents a user/individual as shown in Figure 2.3.

FIGURE 2.2  A simple network.
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Besides the label attached with a node, a node can be attributed with color 
coding (the number of colors to be used depending on the instance). As depicted 
in Figure 2.3, there are two colors attributed to the actors. The black color, for 
example, represents a male actor and the red one a female actor. In general, in 
social network representation, different colors, shapes, sizes, and shades can be 
used to attribute nodes or actors of a network.

2.4.1.2 � Tie/Edge
The edges representing the tie between the actors can be either directed or undi-
rected. An undirected edge simply represents the presence of a tie or relation between 
the actors, whereas a directed edge depicts which source actor intends to represent a 
relation with the destination actor. For example, Figure 2.4 shows a relation of actors 
on a social media platform in which a directed edge from actor A to D shows that D 
is in close group of A and a directed edge from D to B shows B to be in close group 
of A and so on.

The double-headed directed edges can also be used to represent the bidirectional 
tie between the actors, where both the actors intend to represent a tie or relation 

FIGURE 2.3  A node or actor.

FIGURE 2.4  Ties and edges of a network.
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among them. Such bidirectional directed edges can minimize the complexity of the 
graph considerably. As in Figure 2.3, the relation between actor C to D, C to A, and 
A to B are bidirectional where the both actors with a directional edge among them 
intend to represent the same relation.

If there is relation or tie between the actors in which both are connected to each 
other than the connecting actor/nodes form a “clique”. In Figure 2.3 , nodes A, C, 
and D form a clique (each node in the clique is connected to every other node in a 
bidirectional edge), whereas node B is connected to the network/group by only one 
edge and is called as pendent node.

In order to represent multiple relations in a graph, multiple edges with different 
color and shape of lines can be applied to represent the maximum data about the 
network.

2.4.1.3 � Network
The collection of actors and the ties between them forming a graph is known as net-
work, and Figure 2.5 depicts a network of friendship in an organization.

2.4.1.4 � Weighted Ties
The relationship between the actors can be quantified and represented with the 
weighted edges between them. The weighted ties between the actors can be depicted 
either by the thickness of the edge or by the numeric weight that represents the mea-
sure of strength of the relationship. For instance, on a social network platform, there 
are many friends and the frequency of posts liked (showing the maximum associa-
tion or best friends) by the friends can be depicted by using a weighted tie. Figure 2.6 
depicts a scenario of weighted ties in a network.

2.4.1.5 � Group
A subset of actors and their ties sharing some common attribute form a group. For 
instance, in a social network a group can be formed of all those actors having the 
same profession or same age group.

FIGURE 2.5  Network of friendship.
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2.4.1.6 � Geodesic Distance
Geodesic distance can be defined as the minimum number of nodes/ties or the mini-
mum total weight on the edges (if the weight on the edges representing the distance 
or cost of traversal) required to be traversed from a source node/actor to a destination 
node. For example, the geodesic distance between nodes A and D in Figure 2.7 is 3.

2.4.2 �P roperties of Relationships in a Network

2.4.2.1 � Reciprocity
A relation/tie can be reciprocate, that is the relation from node A to node B can be 
treated as same from B to A. For instance, the relation between nodes A and B is 
reciprocated (Figure 2.8).

2.4.2.2 � Transitive Relation
Transitive relations are binary relations defined on a set such that if the first element 
is related to the second element, and the second element is related to the third element 
of the set, then the first element must be related to the third element. For example, if 
for three elements a, b, c in set A, if a = b and b = c, then a = c. Here, equality “=” is a 
transitive relation. There are mainly three types of relations in discrete mathematics, 
namely, reflexive, symmetric, and transitive relations among many others. 

FIGURE 2.6  Weighted ties between actors.
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Transitive relations between nodes A and B are those relations that are going 
through an intermediate node. Transitivity is important to assess the likelihood of 
future relations in a graph (Figure 2.9).

2.4.2.3 � Popularity
It is the likelihood or prediction about the future relation gain of a node that is a focal 
point at present for majority of other nodes in the network. For example, node C is 
having high degree of popularity in the network (Figure 2.10).

2.4.3 �M atrix-Based Representation

In order to represent a social network (the actors and their relationships) in a struc-
tured manner, the matrix mathematical representation is commonly adopted that 
enables the most effective and complex mathematical. This section presents the 

FIGURE 2.7  Geodesic distance between node A and D is 3.

FIGURE 2.8  Reciprocated relation.

FIGURE 2.9  Transitive relation between nodes A and C.
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techniques used for the matrix based representation of social networks along with 
their advantages and limitation.

2.4.3.1 � Sociomatrix/Adjacency Matrix
In its simplest form, a matrix is the arrangement of data in the form of rows and 
columns forming a rectangular array. The data in a matrix is called as elements or 
entities of the matrix, and each entity in the matrix is referred by its row and column 
index (i, j). A matrix having m rows and n columns the matrix is said to be an m by n 
or (m*n) matrix. For example, the matrix in Figure 2.11 depicts a 3*4 matrix.

A matrix having only one row and n column is referred to be as row vector and a 
matrix with one column and n rows is known as column vector.

One of most commonly used matrix for the representation of social networks 
and the relationship is adjacency matrix, in which the total number of actors in the 
network forming the number of rows (m) and columns (n) of the matrix and the pres-
ence of a tie/relation is represented as an element with the numerical value 1 or 0 in 
the corresponding row i and column j for the presence or absence of a tie between 
actors, thus making it a binary matrix. In social network there are more complex ties 
than just the presence or absence of a tie, for instance, in a network of friendship R 
node A treats node B as close friend but node B may not treat the same way, hence 
making an asymmetric tie between them. In such cases, the corresponding element 

FIGURE 2.10  Popularity of node in a network.

FIGURE 2.11  A 4 * 3 matrix.
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techniques used for the matrix based representation of social networks along with 
their advantages and limitation.

2.4.3.1 � Sociomatrix/Adjacency Matrix
In its simplest form, a matrix is the arrangement of data in the form of rows and 
columns forming a rectangular array. The data in a matrix is called as elements or 
entities of the matrix, and each entity in the matrix is referred by its row and column 
index (i, j). A matrix having m rows and n columns the matrix is said to be an m by n 
or (m*n) matrix. For example, the matrix in Figure 2.11 depicts a 3*4 matrix.

A matrix having only one row and n column is referred to be as row vector and a 
matrix with one column and n rows is known as column vector.

One of most commonly used matrix for the representation of social networks 
and the relationship is adjacency matrix, in which the total number of actors in the 
network forming the number of rows (m) and columns (n) of the matrix and the pres-
ence of a tie/relation is represented as an element with the numerical value 1 or 0 in 
the corresponding row i and column j for the presence or absence of a tie between 
actors, thus making it a binary matrix. In social network there are more complex ties 
than just the presence or absence of a tie, for instance, in a network of friendship R 
node A treats node B as close friend but node B may not treat the same way, hence 
making an asymmetric tie between them. In such cases, the corresponding element 

of row and column R (i, j) ≠ R (j, i) forming an asymmetric adjacency matrix R and 
the graph constructed to represent the asymmetric relations are directed graphs.

The elements of a matrix may not be always in binary form. In order to repre-
sent the complex ties between the actors other numerical indicators may be used to 
represent the complex relationships in a social network. The weighted graphs are 
constructed to represent the complex relationships with values showing the strength 
of the relationship.

There may be multiple ties between the actors of a network (represented by mul-
tiple edges with varying colors and weights of the edges in a sociogram). Such rela-
tions can be represented with multiple matrices of same dimension but with varying 
data elements. Figure 2.12 depicts the undirected, directed, and weighted networks 
and their corresponding adjacency matrices.

As depicted in Figure 2.12, in case of a directed graph, the corresponding adja-
cency matrix elements are absent if there is no directed edge from j to i. A network 
having simple unweighted and undirected edges can be represented by a binary 
matrix with elements either (presence or absence of a relation). In order to represent 
more complex relation, the network may have varying level of weight on the edges 
and the corresponding matrix elements also have the varying numerical values to 
represent those complex relations.

FIGURE 2.12  Undirected, directed, and weighted networks and their adjacency matrices.
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2.4.4 �M atrix Operations

Matrix-based representation is the most convenient easy method for the algebraic 
analysis of the network because of ease of using algebraic mathematical concepts. In 
this section we briefly present some of the basic operations that can be performed on 
a social network matrix required for basic analytical purposes.

2.4.4.1 � Degree of Centrality of a Node
Degree of centrality of a node is defined as the number of direct ties a node is having 
in a network. Highest the degree of centrality for a node is an indicator for influence 
of the node in a network. In case of directed graph and directed adjacency matrix, 
there are two types of degrees of centrality, i.e, in-degree and out-degree. The former 
is a measure of the other nodes in a network or sub-network intends to represent a 
relation with the node, and later is the number of other nodes in a network that the 
node under study poses a direct relation. The degree of centrality can easily be deter-
mined by the matrix representation as follows:

Degree of centrality of a node for undirected adjacency matrix can be deter-
mined by counting the number of 1’s in the corresponding row of the node. In an 
adjacency matrix, the degree of node indexed at row is calculated as follows:

	 k Ai j i
j

�� , 	

Degree of centrality of a node for directed adjacency matrix: As mentioned earlier 
in case of directed ties between the actors, there are two types of degrees, i.e., in-
degree and out-degree. The in-degree of a node indexed at row can be calculated 
by summing up the number of 1’s in the corresponding row in the corresponding 
column of the node. The out-degree of a node indexed at row can be calculated by 
summing up the number of 1’s in the corresponding column in the corresponding 
row of the node. Mathematically:

	 K Ai
in

j i
j

�� , 	

	 K Ai
out

j i
j

�� , 	

2.4.5 �M atrix Permutation, Blocks, and Images

In contrast to the graphs, the matrix representation can be used to rearrange the col-
umns and rows to identify the different patterns. The shifting of rows also requires 
the shifting of columns to maintain the consistency in the data. The rearranging and 
shifting of rows and columns of matrix to identify the patterns is known has matrix 
permutation. For example is the matrix in Figure 2.9 where nodes are A, B, C, and 
D with subscripts of m and f to signify the sex of the actors.
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2.4.4 �M atrix Operations

Matrix-based representation is the most convenient easy method for the algebraic 
analysis of the network because of ease of using algebraic mathematical concepts. In 
this section we briefly present some of the basic operations that can be performed on 
a social network matrix required for basic analytical purposes.

2.4.4.1 � Degree of Centrality of a Node
Degree of centrality of a node is defined as the number of direct ties a node is having 
in a network. Highest the degree of centrality for a node is an indicator for influence 
of the node in a network. In case of directed graph and directed adjacency matrix, 
there are two types of degrees of centrality, i.e, in-degree and out-degree. The former 
is a measure of the other nodes in a network or sub-network intends to represent a 
relation with the node, and later is the number of other nodes in a network that the 
node under study poses a direct relation. The degree of centrality can easily be deter-
mined by the matrix representation as follows:

Degree of centrality of a node for undirected adjacency matrix can be deter-
mined by counting the number of 1’s in the corresponding row of the node. In an 
adjacency matrix, the degree of node indexed at row is calculated as follows:
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Degree of centrality of a node for directed adjacency matrix: As mentioned earlier 
in case of directed ties between the actors, there are two types of degrees, i.e., in-
degree and out-degree. The in-degree of a node indexed at row can be calculated 
by summing up the number of 1’s in the corresponding row in the corresponding 
column of the node. The out-degree of a node indexed at row can be calculated by 
summing up the number of 1’s in the corresponding column in the corresponding 
row of the node. Mathematically:
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2.4.5 �M atrix Permutation, Blocks, and Images

In contrast to the graphs, the matrix representation can be used to rearrange the col-
umns and rows to identify the different patterns. The shifting of rows also requires 
the shifting of columns to maintain the consistency in the data. The rearranging and 
shifting of rows and columns of matrix to identify the patterns is known has matrix 
permutation. For example is the matrix in Figure 2.9 where nodes are A, B, C, and 
D with subscripts of m and f to signify the sex of the actors.
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1 1 0
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1 1 1

0 0 1

	

If we permute the above matrix by rearranging the row and column is such a way 
that males and females become the adjacent in the matrix. Being the symmetric 
matrix, the rearranging requires changing the order of rows and their correspond-
ing columns without changing the value of any element in the matrix, the resultant 
matrix is as follows:

It is also helpful, sometimes, to rearrange the rows and columns of a matrix so that 
we can see patterns more clearly. Shifting rows and columns (if you want to rear-
range the rows, you must rearrange the columns in the same way, or the matrix won’t 
make sense for most operations) is called “permutation” of the matrix. Some part of 
the matrix is highlighted with different colors and the elements having same color 
forming a block. Blocks in a matrix are divided by lines for example between male 
(m) and female ( f) actors/nodes. Partitioning the matrix based on some parameter 
(sex in this case) forms the blocks. Such partitioning is required in analyzing the 
social network to gain an insight into the association among the different set of 
actors. For instance, in the matrix above, it is evident that male actor/node are form-
ing a friendship and the female actors don’t. Further the second  and fourth  blocks 
depict the male actors chose female actors as friend more than female actor choosing 
the male.

A block density matrix can be formed, if we chose only role in the above matrix 
(male and female) and select the proportion of the relations/ties in a block as 
follows:

Block Density Matrix

​ Male (m) Female (f)

Male (m) 1.0 0.75

Female (f) 0.50 0.0



32 Community Structure Analysis from Social Networks

An image matrix can be formed from the block density matrix if we further sum-
marize the result by selecting some threshold level of density (0.60 in this case) and 
the density in the block density matrix satisfying the threshold level is recorded as 1 
and below that as 0. The resulting image matrix is as follows:

Image Matrix

​ Male (m) Female (f)

Male (m) 1 1

Female (f) 0 0

2.4.6 �O ther Mathematical Operations

2.4.6.1 � Transposing a Matrix
The transpose of a matrix is the exchange of rows to columns and columns to rows. In 
the context of social network analysis, the transpose of a matrix of directed network 
results in identifying all the sources of relations directed at a particular actor/node. 
If we take the degree of an adjacency matrix and that of the transpose of that matrix, 
then we can find the symmetry of patterns between the actors. In other words, the 
comparison of a matrix and its transpose can identify the reciprocity of relations.

2.4.6.2 � Inverse of a Matrix
The inverse of a matrix is denoted by such that it satisfies the property which is an 
identity matrix. In other words, the inverse of a matrix is just the opposite of the 
original matrix. The inverse operation can be used in the analysis of a social network 
to uncover the nonexistent facts.

2.4.6.3 � Multiplication of a Matrix
In social network analysis, the network is represented as a matrix, and the mul-
tiplication operation is a useful tool. If we apply a multiplication operation on an 
an adjacency matrix, representing a network by itself, i.e., the squaring of an adja-
cency matrix, the resultant matrix provides us with the number of paths of length 
2 between the nodes. Consider the undirected graph in Figure 2.13 and the corre-
sponding adjacency matrix.

If we square the above adjacency matrix, i.e., multiply the matrix by itself, we get 
the following matrix.

​ 0 1 2 3

0 – 1 1 0

1 1 – 1 1

2 1 1 – 1

3 0 1 1 –
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The elements of the squared adjacency matrix (1’s) above show all the nodes con-
nected to other nodes by a path of length 2. For instance, the node 3 is connected 
to nodes 1 and 2 by a path length of 2, and there is no path of length 2 from node 3 
to node 0. Similarly, if we calculate the cube of the adjacency matrix, the resultant 
matrix will show all the paths between nodes of length 3 and so on. Hence, the basic 
multiplication operation on the matrix can reveal important aspect of a network that 
are quite handy for analysts. In analyzing a social network, it is very important to 
know the connectivity or strength of the association or relationships among the actors

In contrast to the normal product, if the Boolean product of the squared adja-
cency matrix is calculated, the resultant matrix will provide us with the answer as 
to whether there is any path of length 2 present between the nodes. A network hav-
ing nodes interconnected to each other by a shorter path shows the strength of their 
relationship.

2.4.7 �L ist-Based Network Representation

Yet another way to represent social network data is by using list-based representation 
techniques. The source graphs are still at the core for both list- and matrix-based rep-
resentation techniques. There are two main techniques for list-based representation.

2.4.7.1 � Edge List Method
An edge list is typically organized as a table where the first two columns list the IDs 
of pairs of nodes that have a connection. Additional columns can optionally provide 
details about the relationship between these nodes, such as the strength of the con-
nection. Pairs of nodes without a connection are usually omitted from the edge list, 
which makes this format more efficient for storing network data compared to socio-
matrices. Unobserved edges can be represented in the edge list by including “NA” 
in the value column.

2.4.7.2 � Adjacency List
An adjacency list is a hybrid representation that combines elements of both an adjacency 
matrix and an edge list. It consists of an array of linked lists, where each list represents 

FIGURE 2.13  Undirected graph and the adjacency matrix.
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the neighbors of a specific vertex in a graph. This structure makes it easy to identify 
which vertices are adjacent to any given vertex. Each vertex can quickly access its 
neighboring vertices via the linked list, making the adjacency list a popular choice for 
graph representation. It is particularly useful for graph traversal problems, where know-
ing the neighbors of a node is often more critical than constructing the entire graph.

Adjacency lists are commonly used for sparse graphs, where the number of edges 
is generally proportional to the number of vertices, |V|.

In a standard adjacency list, there are two primary components: an array of vertices 
(ArrayV) and an array of edges (ArrayE). Each entry in the vertex array indicates the 
starting position of the edges in the edge array for the outgoing edges from that vertex. 
The edge array contains the destination vertices for these edges. To access the neigh-
bors of a vertex v, you can read from Array[v] to Array[v + 1] in the edge array.

2.4.8 �P roperties and Terminologies of Nodes and Relationships

Now we have gained enough knowledge about the social networks and their rep-
resentation; it is time to introduce some of the major terminologies and concepts 
required for the analysis of a network.

2.4.8.1 � Degree of Centrality
As mentioned earlier in the matrix operation, the centrality degree is the most fun-
damental measure. It highlights the number of relationships incident upon a node/
actor in a network. In case of an undirected network, it is just counting the number 
of total edges connected to a particular node/actor, whereas in directed networks, the 
in-degree (the number of edges incident upon a node) and out-degree (the number 
of nodes emanating from a node) are to be calculated. The degree of centrality is a 
measure to identify the importance and connectivity of a node in a network (Jennifer 
Golbeck, 2015).

2.4.8.2 � Eigenvector
Once the degree of centrality is calculated and the most connected (prominent) 
nodes are identified, the eigenvector measures the interconnection of nodes having a 
high degree of centrality. In other words, it calculates which of the prominent nodes 
are connected to other prominent nodes (Denny, M., 2014; Costa and Putnik, 2014).

2.4.8.3 � Betweenness Centrality
It is a measure to calculate the intermediateness of a node that acts as a link between 
the other nodes having the shortest path between them. In other words, it is the sum 
of shortest path lengths between every set of nodes where the path goes through the 
node under observation (Gómez et al., 2013).

2.4.8.4 � Closeness Centrality
It is measure of the number of steps or ties required to be traversed for a particular 
node/actor to reach every other actor in the network (Denny, M., 2014). It is mea-
sured as 1 divided by the total geodesic distance from the current node to all other 
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nodes in the network. If an actor is connected directly to every other actor in a net-
work, the closeness of centrality will be maximum and it is minimum when it is not 
connected to any other actor in a network (Opsahl et al., 2010).

2.4.8.5 � Brokerage
It is a measure which defines how important an actor is in the network that the 
interaction of other actors is dependent on it. It captures the sensitivity of a broker 
that serves as a mediator and thus can gain benefits from their position as an inter-
mediary. There are five kinds of brokerage (Denny, M., 2014) relationships that are 
discussed briefly below:

•	 Coordinator: The node or actor belonging to same group that acts as an 
intermediate between other two actors in the group.

•	 Itinerant: Belongs to a separate group and connects two others sharing the 
group membership.

•	 Gatekeeper: Belonging to same group and acts as the only mean for other 
to connect to the group.

•	 Representative: Belonging to same group and the other actors in the group 
can only connect with other groups through it.

•	 Liaison: Is a member of a group that is distance from two actors that wish 
to connect but do not share group membership themselves. A delivery truck 
driver is a good example. Figure 2.14 depicts all the brokerage types dis-
cussed above.

2.4.9 �T ypes of Networks

2.4.9.1 � Single-Mode/Unipartite Network
This type of network consists of only one type of node. Here, all the nodes in the 
network belong to the same category and edges represent the relationship between 
these nodes. Example: Email communication network, wherein nodes represent indi-
viduals and edges represent email exchanges between them (Figure 2.15).

2.4.9.2 � Two-Mode/Bipartite Network
This type of network consists of two distinct sets of nodes. Edges connect only 
nodes from one set to nodes with the other set, not within the same set. Example: 

FIGURE 2.14  Brokerage relationship (Denny, M., 2014).
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Customer–purchase network, wherein one set represents customers and the other 
set represents products and edges indicate the relationship of the customer with the 
product (Figure 2.16).

2.4.9.3 � Multi-mode/Multipartite Network
It is also known as k-partite, where k represents any number. These networks consist 
of more than two distinct sets of nodes wherein edges always connect nodes of dif-
ferent sets never within the same set. Example: Project–employee–department net-
work where edges connect projects to employees (that work on them) and employees 
to departments (they belong to) (Figure 2.17).

FIGURE 2.15  Single mode.

FIGURE 2.16  Bipartite network.
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2.4.10 �T ypes of Social Network Data

In social network analysis (SNA), various types of data that provide insights into the 
structure, dynamics, and behavior of networks give a basis for understanding how 
the networks function and evolve (Aggarwal, C.C., 2011). Using data from multiple 
sources is imperative and is the future of analytics (Batrinca and Treleaven, 2015). 
Some of the major categories of data on social networks are as follows:

	 1.	Relational Data: This data captures the interaction between the nodes (e.g., 
individuals, and organizations). The relationships can be binary, weighted, 
directed, or undirected. This type of data is mainly used to identify the 
overall network structure, impactful nodes, and types of interactions.

Binary relationships depict the presence or absence of a connection. 
For example, friendships on social networks where each pair is either con-
nected or not. Weighted relationships quantify the strength of the relation-
ship. For example, number of messages exchanged on a social networking 
site. Directed relationships show the direction of connection between two 
nodes. For example, user A follows user B on a social networking site, so 
the relationship can be depicted as A › B. Conversely, undirected relation-
ships depict mutual relationships where there is no specific direction. For 
example, a relation where user A is friends with user B, then user B is 
friends with user A.

	 2.	Attribute Data: This data provides supplementary information about the 
nodes and edges beyond their connections. This type of data refines the 
understanding of the network dynamics in terms of the features of nodes 
and the relationship details. The attributes can be specific to the nodes 
called node attributes, e.g., information like age, designation, and gender or 
specific to the edges called edge attributes, e.g., type of interaction between 
nodes, such as collaboration and mentorship.

FIGURE 2.17  Multi-mode network.
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	 3.	Temporal Data: This data tracks how network relationships and dynamics 
change over time. The data can be event-based, i.e., one which captures an 
action/event with time stamp, for e.g., dates when user A started following 
or unfollowing user B on a social networking site. The data can also be 
dynamic in nature and capture the transformation of networks over a period 
of time. For example, evolution of friendships or connections with time.

	 4.	Geographical Data: This data provides spatial information about the 
nodes and their interactions. The data can be location-based, i.e., identify-
ing the physical location of nodes, e.g., geographic location of users in a 
location-based social network. The data can also be distance-based, i.e., 
measures distance between impactful nodes, e.g., in a crisis management 
system distance can reveal the potential bottlenecks.

	 5.	Interaction Data: This data details the nature and frequency of interac-
tions, identifying active nodes and key relationships. The data can be com-
munication data that records the interaction between nodes, e.g., e-mail logs, 
social media messages, etc. or it can be transaction data that records the 
exchanges and transactions, e.g., financial transactions between businesses.

	 6.	Behavioral Data: This data is used to capture actions and engagement pat-
terns of nodes in a network. The data can be activity data, i.e., capturing 
information about the activities performed by a node, e.g., social media 
posts, likes, and comments. The data can also be engagement data, i.e., 
measuring the level of interaction, e.g., number of people engaged in a reel 
posted on a social media platform.

	 7.	Content Data: This data includes details about the content exchanged or 
shared on a network. This data can be textual, i.e., text of social media posts 
or emails, or multimedia data that includes photos, videos, or other formats 
of media shared on social networks.

Another way of classifying heterogeneous data, as presented in a review article on “A 
survey of privacy-preserving mechanisms for heterogeneous data types”, by Mariana 
Cunha et al. (2021) can be illustrated in Figure 2.18.

2.4.11 �S ome Methods, Tools, and Techniques for 
Social Media Data Extraction

Extracting data from social media can be very beneficial for a variety of tasks 
including market research, trend forecasting, targeted advertising, sentiment analy-
sis, expert findings for research guidance, and many more (Nasution et al., 2021) . 
Considering the humongous data that is available on the Web, extracting relevant 
information for specific tasks can be significantly challenging but at the same time, 
it can lead to transformative advancements across multiple fields (Jin et al., 2007).

This entire process consists of several interrelated steps. The first step is to gather 
or capture the data from various sources. This also involves data pre-processing, 
which involves data cleaning, transformation, integration, and extraction of relevant 
information. The next step is to analyze or understand the information captured. 
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This consists of the removal of noisy data (if any) and performing advanced analyt-
ics such as sentiment analysis and trend analysis. The last step is to present or visu-
alize the findings of the second stage. This involves summarizing and evaluating 
the findings and the final presentation of the results (Arif et al., 2014) (Figure 2.19).

2.4.12 �M ethods Used in Data Extraction 

2.4.12.1 � Social Media Scraping
It is the process of systematically extracting data from social media platforms using 
automated web scraping solutions or scripts (Batrinca and Treleaven, 2015). This 
includes data from social media platforms such as profiles, hashtags, likes, and com-
ments. There are several ways to scrape this data off the social media sites. Some of 
these are as follows:

FIGURE 2.18  Heterogeneous data types.

FIGURE 2.19  Stages involved in social media analytics.
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	 1.	No-Code Web Scraping Tools: These usually provide a pre-configured 
template for major social media platforms allowing users for a quick set-up 
of their scraping projects. Social media scrapers like Instagram scraper or 
TikTok scraper are used by leading brands to scrape through influencers’ 
account to find the right ones for collaboration with their brand.

	 2.	Web Scraping APIs: These allow users to retrieve and extract data from 
social media platforms using API calls/ requests (Devi et al., 2019). Some 
of the leading social media platforms like Facebook API or X (previ-
ously known as Twitter) API provide official APIs that allow developers to 
access the data programmatically. This provides a reliable way of integra-
tion with social media platforms but are bound by certain restrictions such 
as restrictions on the number of API requests per application or user, etc. 
However, code-based web scraping provides a level of customization to the 
users by allowing them to create scrapers based on their specific business 
requirements.

	 3.	Web Scraping Libraries: A social media web scraper can be built using 
one or more web scraping libraries offered by various programming lan-
guages. For example, Python has libraries like BeautifulSoup that parses 
HTML and XML documents, allowing users to navigate, search, and 
modify the parse tree (Thivaharan et al., 2020). NodeJS has libraries like 
Cheerio that parses and manipulates HTML, designed for server-side use 
and Puppeteer which provides a high-level API to control headless Chrome 
or Chromium. Java has JSoup that works with HTML, offering an API for 
extracting and manipulating data.

2.4.12.2  Challenges and Legality Issues Involved
Scraping the data which is publicly available is legal. However, private information 
and copyrighted content are protected by laws like GDPR (General Data Protection 
Regulation). Scraping data off Facebook is legal as of 2024. This includes informa-
tion available publicly like username, profile URL, profile photo URL, followers 
and following information, etc. Another social media platform X, allows publicly 
accessible data to be scraped that can be utilized to track brand sentiment and gauge 
client responses (Yanchang Zhao, 2013). As long as the data is scraped in accordance 
with API requirements there’s no issue; however, the API has some limits, e.g., it 
can only extract public information up to 100 tweets per profile as of January 2024. 
Another leading video-sharing website, YouTube, allows the scraping of data as 
long as it doesn’t interfere with websites operation and doesn’t collect PII (Personally 
Identifiable Information). The data that can be extracted includes video title and 
descriptions, video comments, and video likes and dislikes. This information proves 
to be extremely important for small and medium sized businesses (SMB) to reach 
new audience and enhance their customer base.

2.4.12.3  Top Outcomes of Scraped Social Media Data
	 1.	Consumer-Focused Approach: Dynamic information is required to follow 

a customer-centric approach for consumer targeting and the same needs to 
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be updated regularly as and when new information is available. Customers 
use social media sites and/or online shopping sites to present their reviews, 
comments, and feedback about products. An efficient technique of data 
scraping can use this information which can be beneficial for businesses 
to make informed decisions regarding their products and strategies. For 
example, Spotify has a X account Spotify Cares which is specifically used 
to understand the concerns and expectations of its customers, develop rela-
tionships with potential customers, and improve their customer services.

	 2.	Keep Up with the Latest Trends: To understand customers’ expectations 
about the products and services extraction of current market data is a must. 
Social media sites, lifestyle blogs, and wikis are the source of such informa-
tion. For example, a customer posting his feedback for a product on a shop-
ping site extracted by a social media scraping bot will provide structured 
data that can be helpful for business owners to update their strategies and 
gain insight into the latest market trends.

	 3.	Conduct Sentiment Analysis: Scraped data enables brands to identify 
positive or negative words describing the sentiment of the users regarding a 
product. For instance, you can collect specific tweets/comments with brand 
names or hashtags of a particular brand using a data collection or API tool. 
Based on this data, a positive, negative, or neutral public perspective about 
a product can be formed which is useful for business growth (Nemes and 
Kiss, 2020).

	 4.	API Integration: Another very important tool used in data extraction in 
SNA is the API (Application Programming Interface) that is basically a set 
of rules and protocols that allows different software applications to com-
municate with each other. APIs are mainly of three types:

•	 REST (Representational State Transfer) API: It utilizes HTTP methods 
(like GET, POST, PUT, DELETE) to perform operations on resources. Data 
is received mainly in JSON and XML formats (Batrinca and Treleaven, 
2015).

•	 SOAP (Simple Object Access Protocol) API: With a high level of com-
plexity and security this technique employs XML-based messaging proto-
col for structured communication between systems.

•	 GraphQL (Query language) API: This technique entails a flexible query 
language that can be used by clients to give precise data requests for fetch-
ing only the required data from the heterogeneous collection of social 
media APIs (C. Wang et al., 2019) (Figure 2.20).

Some of the most used social media APIs include X API, which allows access 
to tweets, user profile, and trends; Facebook Graph API, which allows access to 
Facebook data including posts, user profile, and pages; and the Instagram Graph 
API, which is used to access Business Account data, including media, insights, and 
user interaction.
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2.4.12.4 � Challenges and Considerations
	 1.	Data Privacy: When accessing and using personal data, ensuring compli-

ance with data privacy regulations (e.g., GDPR) is very essential.
	 2.	Rate Limiting and Quotas: APIs often impose restrictions on the number 

of requests that can be made within a certain timeframe which can impact 
data collection efforts.

	 3.	Changes and Deprecations: APIs may evolve or become obsolete over 
time, requiring updates to integrations or the adoption of alternative meth-
ods for accessing data.

	 4.	Data Mining and Text Analysis: This involves extracting useful infor-
mation from text-based data using algorithms and machine learning. The 
various techniques involved in this method are NLP (Natural Language 
Processing), Topic modeling, etc. This method is used to process large vol-
umes of unstructured text data. Data mining primarily involves discovering 
patterns, correlations, and insights from large data sets using statistical and 
computational methods. There are a large number of techniques that are 
used in this method like classification, clustering, association rule learning, 
regression analysis, etc. Data mining encompasses a vast array of appli-
cations including customer segmentation, fraud detection, market basket 
analysis, risk management, and others (Bhanuse et al., 2016).

Text analysis also known as text mining involves extracting meaningful information 
from unstructured text data encompassing various techniques to analyze and pro-
cess this data. Key techniques involved in text analysis include Tokenization, speech 
tagging, sentiment analysis, text summarization, text classification, etc. The major 
applications of text analysis include social media monitoring, customer feedback 

FIGURE 2.20  A basic API diagram (adapted from Eising, 2017). Source: Perrotta (2021).
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analysis, document classification, information retrieval, and research (Figure 2.21) 
(Bartal et al., 2007). 

2.4.12.4.1 � Challenges Involved
	 1.	Data Quality and Cleaning: The data extracted by these techniques might 

be inaccurate, inconsistent, or incomplete including duplicates, incorrect 
fields, and missing values (Singh and Dwivedi, 2020) usually requiring a lot 
of pre-processing and normalization. Similarly, the integration of data from 
multiple sources is also a challenge due to differences in format, structure, 
and quality.

	 2.	Scalability: Processing and analyzing large volumes of data can be resource 
intensive as well as require significant computational power and storage. 
An array of efficient optimization algorithms is required as and when the 
size of data grows.

	 3.	Privacy and Security: As with other data extraction techniques, this tech-
nique also requires adherence to data privacy rules and regulations (GDPR, 
CCPA) to protect sensitive user information (Velásquez, 2013). The use of 
powerful processing tools may threaten users’ privacy. Prevention of unau-
thorized access and breaches during data storage and processing is a pre-
requisite of this technique.

	 4.	Feature Extraction: Text data is usually considered high dimensional 
data involving numerous features. Identifying and managing such data and 
selecting relevant features can be quite cumbersome impacting the perfor-
mance of various models. 

Other than these above mentioned methods there are a few other methods that are 
used in data extraction, like Network Surveys, Database Queries, Web crawling, 

FIGURE 2.21  Flow diagram of text-mining.
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Sensor data collection, etc. Each of these techniques has its share of advantages and 
challenges involved.

	 5.	Data Pre-processing

After the data has been extracted from one or more of the already mentioned data 
extraction methods, the next step essential for preparing the raw data for interpreta-
tion is data pre-processing. This step ensures the data is clean, complete, structured, 
and ready for modeling and analysis. Properly pre-processed data allows researchers 
to accurately detect and report defects, thereby improving the suitability of datasets 
for training models. This ensures that models can learn independently from unbiased 
data and generate reliable results (Felix and Lee, 2019).

This process comprises a sequence of steps like data cleaning, data reduction, 
data transformation, and data integration (Roy et al., 2018). Some additional steps 
may also be involved when the extracted data in question is to be used in SNA. These 
may be steps like node and edge definition, attribute encoding, handling self-loops, 
and multiple edges, filtering and subsetting, etc. In this section, we will briefly dis-
cuss each of the stages involved in data pre-processing.

2.4.12.4.2 � Data Cleaning
This is one of the most crucial data pre-processing steps in SNA which deals with 
situations leading to inconsistent and incomplete input. The first issue deals with 
eliminating duplicate values, to ensure the data is unique. This can be accomplished 
by node deduplication involving the identification and merging of duplicate nodes 
and edge deduplication involving the merging of multiple edges that represent the 
same relationship.

The second scenario deals with handling the missing values, which can occur 
in both node and edge attributes. This can be accomplished by imputation, i.e., 
replacing missing values with estimates such as mean, median, or mode of particular 
attribute, or simple removal, i.e., removing the nodes and edges with missing data 
but only if the data is small enough that its removal doesn’t distort the analysis. The 
third deals with fixing errors like typos, or incorrect data entries to maintain data 
quality (Singh and Dwivedi, 2020). Data cleaning also involves the detection and 
handling of outlier nodes and edges representing extreme cases. This can be handled 
with manual inspection and pruning, i.e., removal of nodes/edges or capping their 
values to avoid biased analysis.

2.4.12.4.3 � Node and Edge Definition
This is one of the crucial steps in data cleaning that ensures that the structure of 
the network represents the relationships and interactions within the data. The key 
consideration in node definition is identifying the nodes (entities) and ensuring 
each node is properly labeled ensuring there are no duplicates, ambiguous identi-
ties, or misrepresented actors. Another important consideration is attribute con-
sistency which involves ensuring that attributes of nodes are consistently and 
accurately linked to each node. Edges, also called as links or connections, represent 
the relationships between various nodes. Well-defined edges have the following key 
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considerations: relationship type, i.e., the nature of interaction needs to be captured 
whether it is collaboration, communication, friendship, or influence. While defining 
edges it is very important to identify its direction, whether it is a directed edge or 
an undirected edge. This property can further influence the various metrics involved 
in the network. Edges also have weights, representing the relationship’s strength, 
frequency, or importance. Ensuring that the edge weights are consistent and mean-
ingful is an essential data pre-processing technique.

2.4.12.4.4 � Data Transformation
This technique involves converting raw data networks into a structured format that 
can be analyzed. It may involve steps like smoothing, aggregation, generalization, 
normalization, etc. (Alasadi et al., 2017). Some of the data transformation techniques 
are as follows:

•	 Binarization:

It involves the conversion of network data into a binary format, where edges are rep-
resented as zero or one, i.e., present or absent. This, in turn, determines the presence 
or absence of connections in a network.

•	 Aggregation:

This involves combining multiple interactions or relationships between nodes into 
one single edge for network simplification and reduction in redundancy.

•	 Normalization:

This technique is very effective in networks where data comes from multiple sources. 
It ensures that the network features are on a consistent scale, making them compa-
rable across the network.

•	 Attribute Encoding:

This involves converting categorical variables into numerical representations and 
adjusting numerical values to a common scale if required. It has various types:

	 a.	Label Encoding:

To maintain an ordinal relationship between categories, this technique assigns a 
unique numerical value to each category of a given attribute.

	 b.	One-Hot Encoding:

In the case of nominal data where there is no inherent order in categories, this encod-
ing converts categorical variables into binary vectors where each category is repre-
sented by a separate column.
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	 c.	Frequency Encoding:

To provide a compact representation of categorical data, this technique replaces cat-
egories with their frequency of occurrence in data.

	 d.	Embedding Encoding:

In complex networks, this type of encoding converts high-dimensional categorical 
data into low-dimensional vectors using machine learning models.

2.4.12.4.5  Handling Self-Loop and Multiple Edges
This step includes the elimination of edges where nodes connect to themselves and 
tackling multiple connections between the same nodes (e.g., summing or averaging 
the edge weights). Self-loop typically occurs when an edge of a node in a network 
points back to itself. This can be handled by removing self-loops, counting self-loops 
separately, and weighing self-loops. Multiple edges occur when there is more than 
one edge between the same pair of nodes causing redundancy, misleading metrics, 
algorithm limitations, etc. This can be handled by various techniques, namely edge 
aggregation, edge differentiation, thresholding, etc.

2.4.12.4.6 � Sub-setting and Filtering
This step involves the removal of nodes or edges that seem irrelevant to the analysis 
and focusing on a particular section of the network that is specifically required for 
analysis thereby narrowing the scope. Some of the common sub-setting approaches 
are attribute-based sub-setting which involves extracting a subset of nodes and 
edges based on their attributes. Another approach is time-based sub-setting also 
known as temporal slicing which involves creating a subset of the network that 
focuses on specific time intervals.

Filtering helps to clean the network by removing irrelevant or noisy data. Some 
of the common filtering techniques are degree-based filtering, wherein the filter-
ing of the nodes is done based on their degree or number of connections they have. 
Another approach is edge-weight filtering, wherein filtering of edges is done based 
on their weights retaining only those with a certain threshold of strength. In contrast, 
attribute-based filtering involves removing of nodes or edges based on their attri-
butes or interaction types.

2.4.12.4.7 � Validation and Quality Assurance
This step involves verifying the data integrity by checking that the pre-processed 
data aligns with the expected quality and standards and accurately represents the 
network and addressing discrepancies, if any. There are several key checks that data 
has to undergo to be validated like consistency checks, data integrity, range vali-
dation, data duplication, data completion check, etc. Similarly, the data needs to 
undergo several quality assurance checks to ensure that it reflects the social network 
being studied accurately and without bias. This includes anomaly detection, cross-
validation checks, sensitivity analysis, data documentation and provenance 
checks, bias detection and correction checks, etc.
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2.4.12.4.8 � Prepare Data for Analysis
This is a cross-over step that leads to analysis and involves saving the data in formats 
that are compatible with SNA analysis tools (CSV etc.). It also involves setting up 
visualization parameters to facilitate effective analysis.

2.4.12.4.9 � Metadata and Documentation
This step involves recording the details of the transformations applied in the pre-pro-
cessing phases for record ability and reproducibility purposes. Metadata is also created 
in this step which describes the data attributes, sources, and any changes made to the 
data. The following details are captured in the metadata: Data source information, node 
and edge description, attribute definition and formats, data transformation and cleaning 
steps, limitations and assumptions, file formats, provenance of data, and versioning and 
updates. This ensures the quality and reliability of social network analysis along with 
the creation of more useful stores of information (López-Acosta, Araceli, et al., 2020).

2.4.12.4.10 � Export/Import Data
This is the final step in data pre-processing wherein the cleaned and processed data is 
stored in the desired formats and imported to the SNA tools for analysis and explora-
tion (Camacho et al., 2020). While importing data that is loading cleaned network data 
into an SNA tool for analysis, many steps are performed like data format compat-
ibility (common import formats: GraphML, GML, Pajek, JSON, CSV, etc.), mapping 
nodes and edges, software-specific import requirements, and handling node and 
edge attributes. Similarly, while exporting the data that is saving processed network 
data for external use or sharing again a series of steps needs to be followed, like 
choosing the right export format (common export formats: CSV, GraphML, GEXF, 
JSON, Pajek​.n​et), preserving attributes and structures, software specific export 
features, file size and data complexity handling, metadata handling, etc.

2.5  CONCLUSION

Social network analysis is a multifaceted field that requires the knowledge of other 
related field of science, sociology and mathematics to understand and analyze the 
complex social structure. This chapter covers the most basic aspect of visualisation 
and representation of social structure into different forms that allows the mathemati-
cal and analytical operations to be applied to mine or uncover the patterns in a social 
structure. To get the ball rolling the chapter began with the history and the present 
scenario in the field of SNA. It further examines the type of networks and the social 
network data. In order to gain an insight into the analysis the chapter presents the 
various data extraction techniques and their representation methods along with the 
basic analytical operations to be performed.
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3.1 � INTRODUCTION

People and their interactions are involved in virtual social media platforms [1]. Social 
network analysis (SNA) is the term for the analysis conducted on these virtual social 
networks [2]. Girvan and Newman’s research on these online social networks began 
in 2002 [3], marking the onset of SNA’s study of these networks. The meaning of 
community in virtual social media is taken as per the nature of study under investiga-
tion [4]; loosely, a subset of nodes that are intra-densely and inter-sparsely connected 
is known as the community. [5]. The technique of exploring this community structure 
within a given virtual network is called community detection in that network [6].

There are two types of techniques for community detection in online social 
networks: nonoverlapping community detection [7] and overlapping community 
detection.

These two types of techniques can be best understood as described in the Table 3.1.

3.1.1 �N onoverlapping Community Detection 
(Disjoint Community Detection)

In this type of community detection, a node belongs to a single community within 
the community structure of the given online social network [7]. In the virtual 
social networks, a node inherently belongs to multiple communities, so this disjoint 
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community detection is not a natural way of detecting community structure in vir-
tual social media platforms. This disjoint community detection method only pro-
vides a way for preliminary investigation into community detection in online social 
networks.

The nonoverlapping community detection can be best understood by Figure 3.1, 
in which the community structure has two communities, C1 and C2, and none of 
their members belong to more than one community.

Some of the recent methodologies for detecting disjoint communities are 
described in the following section.

3.1.1.1 � Interest Group Identification Method (IGI)
This method detects disjoint community structure in a given online social network. 
It uses the DFS algorithm to detect community structure in the given social network 
by applying the concept of strongly connected components. This method performs 
best on real online social networks [8].

TABLE 3.1
Types of Community Exploration Techniques in Online Social Networks

Type of Community 
Detection Node Membership

Whether Representing a Real 
Online Social Network or Not

Nonoverlapping 
community detection

Node belongs to a single  
community

Not representing the real online 
social networks

Overlapping 
community detection

Node belongs to multiple 
communities

Representing the real structure of 
online social networks

FIGURE 3.1  Nonoverlapping community structure.
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3.1.1.2 � MDP Cluster Method
It is an efficient modularity-based community detection method and is successful 
in detecting disjoint communities. It detects the communities in large-scale social 
networks. This method uses the Louvain method to address the high dimensionality. 
It uses MPdd, so direct parsing swarm optimization is used to detect communities 
from this super network model. The model works well on real and artificial datasets 
in terms of community detection and run time [9].

3.1.1.3 � CoMRCA Method
This method detects multirelational communities from multirelational networks. It is 
successful in detecting disjoint communities. This method has two steps:

1. In this step, the given social network has to be modeled on the relational analy-
sis concept.

2. During this step, the extraction of multidimensional communities takes place [10].
The comparative analysis of these well-known methodologies for the detection of 

disjoint communities is shown in Table 3.2.

3.1.2 �O verlapping Community Detection

This type of community detection is instrumental in identifying a community 
structure from the given online social network in which a node belongs to multiple 

TABLE 3.2
Nonoverlapping Community Detection Techniques

Method Based on Advantages Disadvantages

IGI [8] DFS for getting 
strongly connected 
components

Having very less runtime Model doesn’t study 
the relationship 
between interest 
groups/communities

MDP Cluster [9] Uses Louvain method 
to address high 
dimensionality and 
uses the direct swarm 
optimization method 
to find communities 
from the network

Gives best results on real 
and artificial networks 
that have high dimensions 
in nature. This model 
shows the best results in 
terms of community 
structure detection and 
run time 

Datasets for the 
application of this 
model need a good 
amount of 
preprocessing and 
preparation

CoMRCA [10] First models the social 
networks on the 
relational analysis 
concept and then 
extracts the 
multidimensional 
communities

Detects multidimensional 
community structures from 
multirelational social 
networks

Limited applications 
to different types of 
datasets 
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communities. Thus, a node can belong to more than one community in the given 
detected community cover. This type of community detection is naturally a realistic 
approach for uncovering true community structure in online social networks. This 
overlapping community detection can best be understood by Figure 3.2, in which 
some nodes have shared memberships in more than one community.

Some of the recent studies that have been conducted for handling overlapping 
community detection are as follows.

3.1.2.1 � ILPA (Improved Label Propagation Algorithm)
This method detects overlapping community structure. This algorithm has two 
stages: 

Stage 1: This stage performs label propagation.
Stage 2: During this stage, overlapping community structure is detected. This 

algorithm works best on real and synthetic datasets [11].

3.1.2.2 � SL3PA Method
This method is based on a speaker–listener propagation approach. It has three stages:

1. Graph splitting
2. Label propagation
3. Community detection
It is a parallel algorithm but takes the given social network as undirected [12].

3.1.2.3 � INOVIN
This approach detects overlapping communities in social networks. Fuzzy clustering 
is used to detect community structure in online social networks. This method uses 
two concepts:

FIGURE 3.2  Overlapping community structure
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First, a fuzzy membership for measuring the dynamic membership of a node 
toward a community, and second, a density variation detection technique is used to 
detect embedded communities [13].

3.1.2.4 � Local Random Walk Method
This method detects overlapping community structure in online social networks. 
This method uses a limited random walk approach to generate attribute vectors for 
nodes and then uses them in the identification of community structure by grouping 
nodes with similar feature sets. This model works best on real and synthetic datas-
ets. This method has been tested for the detection of sparse and dense community 
structure [14].

3.1.2.5 � Density-Based Local Community Detection Method
This method finds overlapping community structures in complex networks.

This method is implemented via the map reduce framework. This method is 
divided into two stages:

	 1.	The first stage identifies a mutual-core connected subgraph of underlying 
network.

	 2.	During this second stage, an existing connected components detection 
method is used to identify components in the mutual-core connected sub-
graph generated in the first stage [15].

The comparative analysis of these recent studies that have been made in the field is 
given in Table 3.3.

To work on uncovering community cover, researchers face the major challenge of 
selecting the best-fit datasets for their research. The open dataset repositories provide 
a way to researchers to choose the respective datasets for their work on community 
detection. To provide researchers a systematic way of choosing the datasets for their 
research study, we aim to fill the gap in this chapter by making a concrete compara-
tive study of major dataset repositories for working on community uncovering and 
information dispersion.

The spread of information is currently a significant component of SNA. The pro-
cess of disseminating data or knowledge in these virtual networks is known as infor-
mation dissemination [16, 17]. Sources for obtaining datasets of these online social 
networks, which vary in size from small to large, are the primary obstacle facing 
researchers studying the dissemination of information in these virtual networks. The 
dissemination of information can be examined with the help of these publicly avail-
able datasets. These online social network datasets can be weighted or unweighted 
based on whether the communications have any tangible magnitudes [18​–20]. They 
can also be directed or undirected based on whether the user communications are 
symmetric or asymmetric between users in the specific network. All the kinds of 
datasets should be employed in the research of information dissemination in virtual 
social networks since the datasets of online social networks can range in size from 
small to large. A social network can be mathematically represented by a graph G (V, 
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E), where V is the set of nodes that represent the network’s users, and E is the set of 
edges that reflect the users’ communications with one another [21, 22].

The online social network graph can be represented in two different ways: either 
as adjacency lists or as square matrices with dimensions V * V. The former method 
is the most commonly used format for online social graph representations.

The majority of the datasets in the public dataset repositories are in the .paj, .csv, 
.xlsx, .txt, .json, .md, .jpeg, .png, .mtx, .tsv, .edgelist, and .net file formats.

To better understand the process of community detection and information spread 
across online social networks, we will compare the main public dataset repositories 
in this chapter.

The chapter comprises four sections, this introduction section is followed by 
Section 3.2 on related work, Section 3.3 on social network dataset repositories and 
their comparative study, and Section 3.4 on conclusions and future work.

3.2 � RELATED WORK

In the discipline of social media analysis, the comparative analysis of various data-
set repositories has been investigated previously. Several notable attempts that are 
relevant to our study are as follows: Weber et al. studied the two datasets that have 
been generated/collected using developed software tools [23]; Masoumzadeh et 
al. studied the geo-social network datasets [24]; Shu et al. conducted a compara-
tive study of many datasets for detecting fake news in virtual social networks [25]; 

TABLE 3.3
Overlapping Community Detection Techniques

Method Based on Advantages Disadvantages

ILPA [11] Label propagation Gives best results on 
real and synthesized 
datasets

The model’s scalability 
to the large real datasets 
is unknown

SL3PA [12] Speaker-listener 
propagation model

Gives advantage of 
parallel computing

Memory requirement for 
running the algorithm is 
a challenging aspect

INOVIN [13] Fuzzy clustering Shows best results for 
detection of 
overlapping 
community structure

Model attributes for the 
datasets are synthesized, 
so dataset preparation is 
hard

Approach is efficient for 
detecting sparse and 
dense community 
structures 

Local random walk 
method [14]

Limited random walk 
method

 Model can’t be applied 
to dynamic networks in 
the current form

Density-based local 
[15] community 
detection method

Connected components Implemented through 
map reduce

The model can’t be 
applied to dynamic and 
evolving networks in 
the current form



56 Community Structure Analysis from Social Networks

Cecajet al. examined the online social network analysis using the crawler gener-
ated datasets and existing datasets [26]. The expanded Stanford Network Analysis 
Platform (SNAP) dataset repository and associated graphing library were described 
by Lescovec et al. [27], while Nadeem examined social network tools and their com-
parative analysis [28].

The following well-known attempts are relevant to our study: utilizing the 
strongly connected component concept to cluster online social networks into several 
interest groups and identify the most influential and final members [29]. Silva et al. 
proposed the profile rank approach [30] for locating prominent users and relevant 
information. Bakshy investigates how users affect one another [31]. A mathematical 
formula for simulating the dissemination of information is proposed by Wang et al. 
[32]. A multiplex influence maximization (MIM) method is suggested by Kunle et al. 
[33] for identifying influential users. In order to uncover overlapping communities, 
Kahef suggests a hierarchical algorithm [34]. To address information dissemination, 
Gatti et al. offer a multi-agent social network simulation [35]. An enriched attribute 
network serves as the foundation for Lin et al.’s proposed overlapping community 
discovery technique [36]. In the vast field of linked online social network analytics, 
these are just a few attempts.

3.3 � SOCIAL NETWORK DATASET REPOSITORIES 
AND THEIR COMPARATIVE STUDY

We can use a variety of publicly accessible dataset repositories to investigate knowl-
edge dissemination and community detection in online social networks. The best-
known and most-used dataset repositories for studying community detection and 
information diffusion in online social networks are as follows.

3.3.1 �S tanford Network Analysis Platform (SNAP) Dataset Repository

An enormous number of online social network datasets are available in this reposi-
tory. This repository’s networks range in size from medium to large. This repository 
contains at least 50 datasets that can be used to disseminate information. The dataset 
file and the metadata file for each dataset are contained in the relevant dataset [37].

3.3.2 �P ajek Dataset Repository

The most popular SNA dataset repository is called Pajek. Small datasets are included 
in the repository; these datasets are benchmarks for research on community detection 
and the spread of information in virtual social networks. The datasets in the reposi-
tory are most useful for studies that aim to explain the diffusion of knowledge [38].

3.3.3 �A rizona State University (ASU) Dataset Repository

The University of Arizona built the repository. Datasets of online social networks are 
available in the ASU collection, which can be utilized to study community detection 
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and to investigate the spread of information within these networks. The majority 
of extensive datasets for online social networks are available in the repository [39].

3.3.4 �UCI  Network Dataset Repository

Datasets from both small and large online social networks are available in the 
repository; these datasets can be used for the study of community detection and in 
the research of how information spreads across these networks. The University of 
California is the creator of this library of datasets. The datasets are available for free 
download by users, who may then utilize them for analysis.

3.3.5 � KONNECT Dataset Repository

It is a German University of Lolenz-Landau’s Koblenz’s network collection. The col-
lection includes 1326 network datasets ranging in size from small to large, which can 
be used to research how information spreads through online social networks [40].

3.3.6 � Kaggle Dataset Repository

The library of open-source datasets can be utilized to investigate community detec-
tion and the spread of information inside virtual social networks. Datasets from the 
repository can be utilized to investigate mostly the information dissemination using 
machine learning models [41].

The two main research areas of social network analysis (SNA) are community 
detection and information dissemination, which may be studied using all these 
dataset repositories. The factors required for the particular research project may 
influence the final selection of these dataset repositories. The comparative study of 
the above-mentioned dataset repositories based on various parameters is given in 
Table 3.4.

This comparative study of open dataset repositories can be used by researchers 
who are eager to study community detection and information dissemination.

TABLE 3.4
Comparative Study of Various Open Dataset Repositories

Dataset Repository 

Direction Magnitude Scale

Undirected Directed Unweighted Weighted Small Large

SNAP Yes Yes Yes Yes No Yes

Pajek Yes Yes Yes Yes Yes No

ASU Yes Yes Yes Yes No Yes

UCI Network Yes Yes Yes Yes Yes Yes

 KONNECT Yes Yes Yes Yes Yes Yes

Kaggle Yes Yes Yes Yes Yes Yes
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3.4 � CONCLUSIONS AND FUTURE WORK

We have presented a comparative analysis of the main public dataset repositories 
available for use in researching community detection and the spread of information. 
Based on the structural characteristics of these networks, like direction, magnitude, 
and scale, we have conducted a comparative analysis of the various dataset reposito-
ries that were utilized in the aforementioned studies. Researchers can select various 
datasets from these public dataset repositories to investigate community detection 
and the dissemination of information. In the future, our research study will make use 
of datasets from the Pajek and SNAP dataset repositories.
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4.1 � INTRODUCTION

A social network can be used to express any real-world network. It can be described 
as a structure represented by a number of nodes and the connections between them, 
which are typically referred to as ties. The term social actor refers to a node in a 
social network that can represent a person, group, document, organization, or nation. 
A connection between a pair of nodes can reflect associations such as common inter-
est areas, dislikes, friendships, exchange of information, hyperlinks, or common 
citations. Social network analysis (SNA) (Wasserman and Faust 1994) studies the 
relation between entities including social structures, social position, role analysis, 
etc., and analyzes it for finding useful patterns or flow of information.

With the advent of Web 2.0, there has been tremendous growth in the study 
of different networks like Internet (for marketing or other business ventures), 
social networks or other links between individuals (e.g., X), protein networks, 
food webs, distribution networks such as blood vessels (Newman 2003). SNA 
considers large-scale networks, revealing patterns not visible in small networks, 
therefore, their analysis becomes very important (Tang and Liu 2010). The links 
between the elements that make up these networks offer deep understanding of 
their numerous dynamic interactions and may be useful in a number of contexts. 
Graphs are employed as data structures in the analysis and research of these 
networks. A graph is a non-linear data structure that consists of a set of nodes 
joined by links or edges which can be labeled/unlabeled or directed/undirected 
or signed/unsigned (Cook and Holder 2006). A network can be easily visualized 
and interpreted with greater ease when it is presented in the form of a graph (Cook 
and Holder 2006).

A social graph is defined as a data structure used to model social networks 
with densely populated nodes based on certain similarities. Large social graphs 
tend to show properties like scale-free distribution, small-world effect, and strong 
community structure as mentioned by Tang and Liu (2010). In general, it can be 
seen from statistics that many data samples have a particular scale. But the nodes 
in a social graph do not follow this rule and are bound to show a behavior called 
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as the scale-free distribution. A scale-free distribution also known as power law 
distribution is a skewed distribution, where a tail depicts that the majority of 
nodes in a social graph have a low degree as compared to those having dense 
connections. Another feature shown by a social graph is the small-world effect. 
According to Milgram (1967), social networks can be categorized as small worlds 
since the average path length in a well-defined population for two individuals to 
meet is six hops. This finding gave rise to the well-known expression “six degrees 
of separation.” Also, it is seen by the researchers that two entities in a network 
are not too far away considering the number of hops between them, in general 
they are shown to have six degrees of separation (Leskovec and Horvitz 2008). 
Different measures like diameter, eccentricity, and path length are used to depict 
the same.

A social graph exhibits the presence of a robust community structure. This indi-
cates that groups of entities interact with one another more frequently than the rest 
of the network. Communities in social networks frequently correspond to signifi-
cant functional or interest groups of the underlying nodes, and it might be chal-
lenging to develop methodologies and strategies to pinpoint these groups. Social 
networks display community structures, which are groupings of nodes that are more 
similar or closely connected, due to the crucial attribute of network transitivity. 
Clustering coefficient is used to capture transitivity, which plays a crucial role in 
identifying the community structure. There are two categories of clustering coef-
ficients—local clustering coefficient and global clustering coefficient (Watts and 
Strogatz 1998). Local clustering coefficient identifies the cliques formed among a 
node’s immediate neighbors. A clique represents a complete graph. While global 
clustering coefficient identifies the number of triangles in a given network which 
helps in identifying high-density regions in a graph. These two measures help in 
detecting communities.

Information is extracted from a dataset that can be characterized as a graph 
through the process of graph mining. Traditional graph mining includes frequent 
subgraph mining, graph matching, graph classification, graph clustering, etc. 
(Atastina, Sitohang, Saptawati, and Moertini 2017). Also, frequent graph mining 
extracts the frequently occurring subgraphs in a network, i.e., the subgraphs having 
a count above a certain threshold value (Jiang, Coenen, and Zito 2013). These sub-
graphs depict some repeating patterns or can be beneficial for finding isomorphic 
graphs (Corneil and Gotlieb 1970). Classification and clustering handle the data by 
dividing it into smaller groups or labels based on supervised or unsupervised learn-
ing approaches, respectively. One of the important applications of graph mining is 
community detection, which studies the cohesive groups in a graph. These groups 
are tightly coupled and have high association among themselves and a smaller 
number of associations outside the group (Lancichinetti and Fortunato 2009). In 
contrast to nodes located outside a community, nodes within a community might 
have similar features, which provide input to several applications like target mar-
keting (Pool, Bonchi, and Leeuwen 2014), studying common interest groups (Lim 
and Datta 2012), recommendations and user interface adaptations (Planti é and 
Crampes 2013).



65Community Detection

4.2 � LITERATURE REVIEW OF COMMUNITY 
DETECTION ALGORITHMS

Community in a given network is defined as a close-knit group of objects that inter-
act more frequently with each other as compared to the other parts of the network as 
shown in Figure 4.1. Also, according to Lin and Kernighan (1973), “Communities 
are those parts of graph that have less ties with rest of the graph.” Therefore, detec-
tion of communities extracts the group of nodes that have a high number of interac-
tions among themselves than with the rest of the network.

Networks are frequently investigated at various granularities, from the mac-
roscopic descriptions of statistical aspects (degree distribution, total clustering 
coefficient, etc.) to the microscopic features (degree, centrality, etc.) of nodes. A 
“mesoscopic” explanation attempts to describe the community organization in net-
works between these two levels. Sets of nodes in a network that are more densely 
connected to one another than to the rest of the network are referred to as communi-
ties. Community structures, such as social groups interacting in a society (Girvan 
and Newman 2002; Arenas, Danon, Dz-Guilera, Gleiser, and Guimer 2004), topic-
related webpages (Flake, Lawrence, Giles, and Coetzee 2002), and sections within 
food webs (Krause, Frank, Mason, Ulanowicz, and Taylor 2003), are significant 
because they are frequently closely linked to the functional units of a system.

A fundamental job in social network analysis, community detection has attracted 
a lot of attention recently and the subject is still developing quickly Fortunato and 
Castellano 2012). In the field of community detection, some of the most widely used 
work is the one developed by Girvan and Newman (2002). The algorithm develops 
a divisive strategy by deleting the edge with the largest betweenness value modu-
larity. It aims to eliminate edges progressively using the concept of edge between-
ness. After removal of this edge, the betweenness is calculated for the affected 
nodes and edges. Another popular work by Newman (2006) is where the quality 
function for modularity is introduced. Modularity is expressed as eigenvectors that 
use a spectral algorithm for community detection and return densely packed com-
munities with shorter run time. Spectral clustering in (Auffarth 2007) is based 
on the problem of graph partition where the input data matrix is in the form of 
eigenvectors. This data is represented as coordinates in multi-dimensional space 
and k-means clustering is applied, which results in communities. The community 
detection problem is formalized as an optimization problem in Genetic Algorithm 

FIGURE 4.1  (a) Social graph, (b) disjoint communities from social graph, and (c) overlap-
ping communities from social graph
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TABLE 4.1
A Summarized Literature Review
State-of-the-Art 
Approach

Category/Type of 
Network

Advantages Disadvantages

DBSCAN (Ester, 
Kriegel, Sander, 
and Xu 1996)

Traditional approach/
Undirected social 
graph

It allows 
arbitrary-shaped 
communities.

It uses two parameters that 
decide upon the structure of 
the community.

k-Means clustering 
(MacQueen 1967)

Traditional approach 
Undirected social 
graph

It can determine 
communities of 
various shapes 
and size.

The algorithm depends on the 
value of k. It clusters outliers 
by forcing the centroids to 
expand or can lead to 
formation of a community 
consisting of only outliers.

(Continued)

(GA) (Bui and Moon 1996). GAs are used to optimize modularity (Lehnerer 2018) 
and community score (Hafez, Ghali, Hassanien, and Fahmy 2012) to detect com-
munity structure in a graph. Community detection has many real-world applica-
tions (Bhat and Abulaish 2015; Bhat and Abulaish 2013; Asur, Parthasarathy, and 
Ucar 2009; Fu, Song, and Xing 2009; Backstrom, Huttenlocher, Kleinberg, and 
Lan 2006; Dunlavy, Kolda, and Acar 2011).

A few algorithms in community detection are random walk-based, spin models, 
synchronization, etc. In random walk, nodes are traversed over randomly and merged 
into groups using different strategies (Zeitouni 2006; Zhou 2003). Spin models are 
used in statistical mechanics. A network graph is transformed into the Potts model 
and each node with a community is associated with spin variables (Reichardt and 
Bornholdt 2004). The algorithm defines a modified Potts Hamiltonian, combining a 
ferromagnetic variable that encourages intra-community connections with an anti-
ferromagnetic variable that promotes diversity among spin configurations. Another 
work in Reichardt and Bornholdt (2006) assumes nodes to be in a spin state and 
introduces the spin glass technique. A method for community detection is introduced 
by mapping the problem onto finding the ground state of an infinite-ranged Potts spin 
glass model. The energy of the spin system corresponds to a quality function for clus-
tering, where the spin states represent group indices. This method bridges hierarchi-
cal and partitional clustering by adjusting a parameter that influences the weights of 
missing and existing links, providing insights into community overlap and hierarchy.

A few works based on snowball sampling-inspired community detection have 
been mentioned in Gulati and Abulaish (2019), Gulati and Abulaish (2023), Gulati, 
Abulaish, and Bhat (2022). They introduce a new set of algorithms that are based on 
snowball sampling techniques for undirected (both disjoint and overlapping com-
munities) social graphs. The algorithms start with identifying the seed nodes, i.e., 
the nodes with high connectivity in their neighborhood. It progresses by merging 
seed nodes with their best neighbors, forming snowball chains called communities.

Table 4.1 shows a few popular state-of-the-art techniques in the field of community.
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TABLE 4.1 (CONTINUED)
A Summarized Literature Review
State-of-the-Art 
Approach

Category/Type of 
Network

Advantages Disadvantages

Hierarchical 
clustering 
(Newman and 
Girvan 2004)

Traditional approach/
Undirected social 
graph

It forms a tree of 
communities that 
can be cut at any 
given level as per 
a given metric 
value.

A node with low degree value is 
unable to join the bigger 
communities. Also, once a 
node joins a wrong community 
it can never re-enter another 
community.

Spectral clustering 
(Auffarth 2007)

Traditional approach/
Undirected social 
graph

It is a generic class 
of algorithms that 
is easy to 
implement. It is 
robust to noise 
and outliers in 
the data.

Its efficiency reduces when the 
size of dataset increases as it 
requires a large storage space 
and a lot of time to process the 
eigenvectors. It also requires 
number of clusters at the 
beginning of the algorithm.

LPA (Raghavan, 
Albert, and 
Kumara 2007)

Undirected social 
graph

Its linear time 
complexity for 
sparse graphs and 
quadratic for 
other graphs

The resulting community 
structure may vary in every 
execution of LPA. It has 
another issue that it can result 
in formation of a monster 
community.

Stepping LPA-S 
(Li, Huang, Wang, 
and Chen 2017)

Undirected social 
graph 

This method 
considers both 
similarity among 
nodes as well as 
the topology of 
the network 
unlike LPA and 
hence, form 
meaningful 
partitions.

The time complexity is no more 
linear than LPA, it is quadratic 
for this algorithm.

SLPA (Xie, 
Szymanski, and 
Liu 2011)

Overlapping 
community 
detection approach

It has a linear time 
complexity for 
sparse networks.

It is an extension of LPA that 
makes use of a hyper-
parameter. It restricts the label 
updation to only the border 
nodes to save time.

DEMON (Coscia, 
Rossetti, 
Giannotti, and 
Pedreschi 2012)

Overlapping 
community 
detection approach

It is a 
deterministic 
method and has 
limited time 
complexity.

It uses hyperparameters for 
setting the threshold value and 
minimum community size.

ANGEL (Rossetti 
2019)

Overlapping 
community 
detection approach

It provides low 
time-complexity 
with high-quality 
overlapping 
partitions.

The evolving nature of a 
community remains an 
unanswered question and can 
have several interpretations, 
which need attention.

(Continued)
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TABLE 4.1 (CONTINUED)
A Summarized Literature Review
State-of-the-Art 
Approach

Category/Type of 
Network

Advantages Disadvantages

Infomap (Rosvall 
and Bergstrom 
2008)

Disjoint/Overlapping 
Community 
detection approach

It is a scalable 
algorithm that 
can organize 
communities as 
per hierarchy.

This algorithm does not seem to 
work well for random 
networks.

Louvain (Blondel, 
Guillaume, 
Lambiotte, and 
Lefebvre 2008)

Disjoint community 
detection approach

It performs well 
on large 
networks.

This technique is unable to 
separate outliers.

BigClam (Yang and 
Leskovec 2013)

Overlapping 
community 
detection approach

It scales up to 
large networks 
containing 
millions of nodes 
and edges.

This algorithm does not 
consider the content of the 
node and the edge weights and 
focuses on the relationship 
among edges.

Multicomm 
(Hollocou, 
Bonald, and 
Lelarge 2018)

Overlapping 
community 
detection approach

This technique 
helps in 
identifying 
communities 
from 
multilayered 
networks that 
have a wide 
range of 
connections 
among 
themselves.

It requires number of 
communities as an input 
parameter. The use of 
conductance diminishes the 
quality of the identified seed 
nodes Liu, Shao, and Su 
(2020).

CONGA (Gregory 
2007)

Overlapping 
community 
detection approach

It uses edge as 
well as vertex 
betweenness to 
determine quality 
partitions.

It has high computational 
complexity.

COPRA (Gregory 
2010)

Overlapping 
community 
detection approach

It works for 
directed and 
weighted graphs.

It produces a number of small 
size communities for networks.

CFinder 
(Adamcsek, Palla, 
Farkas, Der´enyi, 
and Vicsek  2006)

Overlapping 
community 
detection approach

It uses a local, 
density-based 
approach which 
identifies cliques 
rather than 
k-cliques.

This approach requires locating 
all maximal cliques rather than 
the individual k-cliques, which 
is an NP-hard problem. It also 
fails to terminate in many large 
social networks.



69Community Detection

4.3 � APPLICATIONS

Community detection seeks to uncover or draw attention to information that is less 
widely recognized or that would remain overlooked without prudent data analysis. 
Community detection is used in a variety of applications by diverse network types, 
including biological, social media, academic, etc., to gather insightful information. 
The current subsection discusses a few of the real-world applications in several fields.

Online Social Network: X being a popular social network utilizes community 
detection techniques for understanding the features of a network, analyzing public 
emotions, visualizing association among users, and analyzing a group of users with 
a specific interest (Diakopoulos and Shamma 2010; Choudhury, Lin, Sundaram, 
Candan, Xie, and Kelliher 2010; Ozer, Kim, and Davulcu 2016). In Ferrara (2012), 
large-scale community structures are studied using more than 500 million Facebook 
users, identifying a high degree of similarity. Community identification methods 
can also be applied to detect threats like attacks by terrorist groups in social net-
works (Waskiewicz 2012). Another social media Flickr uses community detection 
to organize content for users’ ease. In the work by Papadopoulos, Zigkolis, Tolias, 
Kalantidis, Mylonas, Kompatsiaris, and Vakali (2010), a group of related images is 
extracted for users to navigate through them easily. Another similar work in Mo¨ellic, 
Haugeard, and Pitel (2008) uses the nearest neighbor approach to identify similar 
photos. Event tracking is another application of community detection in social media 
(Sayyadi, Hurst, and Maykov 2009). It is characterized based on similar keywords, 
i.e., documents describing a common event will be associated with a common set of 
keywords.

Recommender Systems: In order to target customers with marketing techniques, 
offer recommendations, and improve the online purchasing experience, e-com-
merce uses data mining technologies (Javed, Younis, Latif, Qadir, and Baig 2018). 
According to Ricci, Rokach, and Shapira (2011) and Reddy, Kitsuregawa, Sreekanth, 
and Rao (2002), customers are given product recommendations based on their prior 
purchases.

By integrating elements like links between users, social connections, and geo-
graphic location, community detection improves this process. Another application 
in this field mentioned in Beigi, Jalili, Alvari, and Sukthankar (2014) is based on 
the prediction and propagation of trust among users in social media. By considering 
the similarity between a customer’s trust values and the trust relations in a network, 
like-minded consumers in a community are found. Also, in order to identify authors 
working in the same field of study or to locate relevant research from citation net-
works and co-operation networks, one useful tool is community detection (Wang, Li, 
Zhang, and Lu 2016). Similar to this, Xin, E, Song, Song, and Tong (2014) discuss 
book recommendations based on a user’s social conduct. For statisticians, another 
comparable work in Ji and Jin (2016) organizes the co-authorship and citation data. 
A work in Gasparetti, Sansonetti, and Micarelli (2021) highlights a graph created 
with X users and their tweets as vertices. The edges represent the follow-followee 
relationship and user-tweet interactions. By using a community detection algorithm, 
the partitions C = C1, C2, ...., CN are identified based on similar characteristics. 
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The technique can also be viable for future link prediction, which is the essence of 
a recommender system. It sets a utility function that needs to be maximized. This 
function finds the likelihood of existence of a link between two nodes given com-
munities C.

Healthcare: Due to the great number of interactions between entities, biological 
networks such as protein-protein interaction, metabolic networks, etc., also have appli-
cations in this area, like Spirin and Mirny (2003), Dunn, Dudbridge, and Sanderson 
(2005), which identify functional modules in a protein network. A principle compo-
nent analysis (PCA)-based method was created to disclose the community structure 
for the sake of illness diagnosis and prevention. Using k-means and fuzzy C means to 
cluster IR (infrared) spectra from tissues, community detection also assisted in find-
ing malignant cells in lung tissues given by Bechtel, Kelley, Coons, Klein, Slagel, and 
Petty (2005) and an early-stage breast cancer given by Wang and Garibaldi (2005).

Fraud Detection and Link Prediction: Community detection is another technique 
used in fraud detection to locate network peaks. In Pinheiro (2012), the communi-
ties are first identified from a telecommunication network, and then the outliers are 
found using graph topological properties such as degree and betweenness. Similar 
to this, two strategies are developed in Gangopadhyay and Chen (2016) for a health-
care network to discover exclusive partnerships utilizing suspicious groups. In many 
aspects of life, including recommending new products to users on e-commerce sites, 
friend recommendations on social networking sites (Jalili, Orouskhani, Asgari, 
Alipourfard, and Perc 2017), and determining the connection between two proteins 
(Lei and Ruan 2013), link prediction uses community detection. It forms the basis of 
hyperlink prediction on the World Wide Web by Liben-Nowell and Kleinberg (2003) 
and recommender systems by Cao, Liu, and Yang (2010).

4.4 � COMMUNITY DETECTION USING PYTHON

Python is a popular programming language for community detection because of its 
wide variety of libraries, simple syntax, and ease of integration with other computer 
languages. CDlib ((C)ommunity (D)iscovery Library) is a Python library used for 
identifying and extracting communities from networks. The library helps in commu-
nity discovery analysis. CDlib is a Python package built upon the network facilities 
offered by networkx and igraph. The library provides a standardized input/output 
for several Community Detection algorithms as mentioned by Rossetti, Milli, and 
Cazabet (2019). A few popular sub-libraries have been discussed below.

4.5 � ALGORITHMS

Some of the popular community detection algorithms are coded in this library. In 
2008, the Louvain community detection algorithm (Que, Checconi, Petrini, and 
Gunnels 2015) was introduced as a fast method to unfold communities in huge 
networks. This method is based on modularity and it maximizes the gap between 
the actual number of edges within a community and the expected number of edges 
within a community as mentioned in Figure 4.2.
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Subsequent studies revealed that Louvain community detection frequently finds 
internally unconnected communities (poor internal connections). Moving a node that 
has served as a bridge between two components in a community to a new community 
could cause the old community to become disconnected in the Louvain algorithm. 
In order to maximize a modularity score for each community, the algorithm divides 
nodes into disjoint communities. The Leiden method in Figure 4.3 is a hierarchical 
clustering algorithm that works recursively by combining communities into single 
nodes through greedy modularity optimization. It makes adjustments to the Louvain 
method to mitigate some of its flaws, such as the situation where some of the com-
munities Louvain finds are not highly connected. This is accomplished by dividing 
communities into smaller, more interconnected groups at random intervals (Traag, 
Waltman, and van Eck 2019).

Another method for identifying communities based on random walks is called 
Walktrap (Pons and Latapy 2005) shown in Figure 4.4. In this method, the network’s 
random walks are used to calculate the distance between each vertex.

4.6 � EVALUATION

Evaluation can be done in two ways: internally and externally. The internal evalu-
ation is calculated based on fitness scores like modularity, average internal degree, 
conductance, etc. Whereas the external evaluation is done based on comparison of 
partitions like the ground truth and the identified partition. It can be calculated using 
Normalized Mutual Information, Omega score, Rand Index, etc. ​

The Python code in Figure 4.5 calculates the average distance which is defined 
average path length across all possible pairs of nodes containing it.

FIGURE 4.2  Louvain algorithm for identifying communities.

FIGURE 4.3  Leiden algorithm for identifying communities.

FIGURE 4.4  Random walk for identifying communities.
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FIGURE 4.5  Average path length calculation.

FIGURE 4.6  Transitivity calculation.

The code in Figure 4.6 calculates the average transitivity of a community defined 
as the average clustering coefficient of its nodes w.r.t. their connection within the 
community itself.

The external evaluation is done by the code in Figure 4.7 that implements the 
normalized mutual information (NMI). It is a normalization of the mutual informa-
tion (MI) score to scale the results between 0 (no mutual information) and 1 (perfect 
correlation).

4.6.1 �V iz

This library as the name suggests is used for visualization of the social graph and the 
identified communities. It can be color coded and polygons can be drawn from the 
communities using this library. The code for the same is mentioned in Figure 4.8.

FIGURE 4.7  Normalized mutual information calculation.

FIGURE 4.8  Graph visualization.
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Using a color-coded system based on community assignments, this function creates 
a graph with nodes. Every node is part of an individual community, which is visual-
ized by this function by assigning each community and its nodes a different color.

4.7 � ADVANTAGES

Networks like OSNs, biological networks, etc. offer enormous amounts of data about 
users and their preferences (via profiles), and allow them to publish and share stuff 
about themselves, their lifestyles, etc., with other network users. The ability for users 
to communicate with other users who they may connect with is one of the most sig-
nificant and noteworthy advantages offered by these OSNs. With the help of these 
user-centered features, a user can establish and maintain social connections, locate 
and connect with other users who share their interests and preferences, and share, dis-
cover, and support user-contributed information and knowledge (Mislove, Marcon, 
Gummadi, Druschel, and Bhattacharjee 2007). There is an exceptional potential to 
research, comprehend, and utilize the qualities of OSNs given their extreme popular-
ity, massive membership, and enormous volume of social network data generated. A 
thorough examination of OSN growth and structure can not only help in designing 
and assessing existing systems but also improve the design of future OSN-based 
systems and provide a better understanding of how online social networks affect 
society. Social network analytics is experiencing an information explosion as a result 
of the massive amount of data that social networks are producing on a daily basis. 
This makes it necessary to employ computational methods for effectively analyz-
ing the nature and structure of these intricate networks. In addition to collaborating 
with sociologists to develop social network analysis techniques for identifying social 
network features, computer scientists are developing and utilizing data mining tech-
nologies to uncover hidden patterns in social network data. As a result, social graphs 
are utilized to model OSNs because they enable easier analysis utilizing a wide range 
of topological properties and better visualization.

A social network can be transitioned into a social graph, but it is difficult to ana-
lyze and assess patterns with the naked eye. Therefore, powerful algorithms are 
required for its analysis. Community detection being one of them focuses on identi-
fying strongly connected or highly interacting entities. It helps in evaluation of large 
and complex networks and provides useful insights.

Social media algorithms can identify and maintain strong connections with peo-
ple who share interests by utilizing community detection techniques. In machine 
learning, community detection can be used to identify groups with shared character-
istics and extract groupings for a variety of purposes. This method can be applied, 
for instance, to identify manipulative organizations inside a stock market or social 
network.

4.8 � CHALLENGES

Many other social network analysis tasks are based on the identification of groups, 
clusters, or communities in a social graph. The goal of community detection is to 
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identify groupings (communities) by analyzing network topologies and structures. It 
becomes difficult to identify community structures because it depends on a number 
of variables, such as whether the structure is based on global or local structural 
properties, whether a node can simultaneously belong to more than one community, 
whether link weights are taken into account or not, and, last but not least, how the 
seed nodes are chosen. The following are a few challenges that keep coming up when 
analyzing communities in social graphs:

Computational Cost: The complicated nature and scope of social graphs make 
it increasingly challenging to handle the enormous volumes of data. The enormous 
amount of data on social media sites like X, pertaining to tweets, hashtags, etc. places 
a heavy computational overhead on community detection algorithms. Considering 
the time parameter, the social network is dynamic and ever-evolving. To capture this 
essence is important for a community detection algorithm. The number of resources 
required to handle large complex computation of algorithms on huge networks is 
another facet of this challenge.

Community Validation Measures: There are no means for validating the dis-
covered community to determine whether it is accurate or not. When ground-truth 
data is available, normalized mutual information (NMI) can be used to assess how 
closely the communities identified by a specific algorithm and the ground-truth data 
align. Although there are a very few datasets providing such information, the avail-
ability of ground-truth data also becomes a problem. Additionally, a lot of quality 
measures have been researched and developed over the years, but none of them 
can be used consistently to ratify all community detection methods. It is observed 
that various algorithms use various measures depending on the situation (Hafez, 
Hassanien, and Fahmy 2014). As an illustration, assessing disparate groups makes 
use of NMI, and assessing overlapping communities makes use of overlapping NMI 
(ONMI). Finding the appropriate assessment metric for a given algorithm is there-
fore a difficult task.

Interpretation of Results: The detected communities can only be interpreted with 
the domain knowledge about the network under consideration, which might not be 
always available. It is not always possible to assess the quality of the identified com-
munities because of the different use cases, i.e., different network distribution might 
produce different type of communities. The identification of appropriate metrics also 
becomes troublesome in such cases. In the case of social media, overlapping com-
munities might prove to be beneficial but the presence of high overlaps might lead 
to unclear results.

Overlapping/Hierarchical Nature of Communities: In real-world networks, inter-
acting with multiple groups is extremely common, therefore many nodes in social 
graphs typically show affinity for numerous communities. In a social network, a 
person could belong to multiple interest groups, hence it may be crucial to identify 
all of these overlaps. Additionally, research on the development of hierarchical com-
munities is useful in projecting the potential growth of the network. The majority of 
community identification methods employed in literature, however, frequently reveal 
mutually exclusive community structures. Therefore, it is especially desirable to 
develop techniques for finding overlapping and hierarchical community structures.
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Handling of Multimodal Data: Managing the multiple attributes of an actor in an 
OSN (e.g., name, hashtags, user ID, etc.) or their relationships (represented by friend-
ship, number of common interest groups, etc.) require multimodal data handling. 
The network structure and other text or image attributes need to be stored and pro-
cessed for finding similarity or establishing connections between users. For manag-
ing such type of data, a more complex structure is required that can be accomplished 
using numerous layers in an algorithm or using complex models.

Seed Node Identification: The selection of the starting or seed node for the detec-
tion process is still an unresolved question. This is significant since the quality of 
the community to be identified depends on the identification of the seed node. For 
instance, the detection process may become trapped in the local maxima if the seed 
node is not chosen wisely. The process also might become tedious for dynamic net-
works as the temporal variability affects the quality of the detected communities.

4.9 � CONCLUSION

Effective tools are required to provide social analysts with simple exploratory 
insights or large-scale, significant social patterns and trends for major organizations 
since social network analysis is a diverse topic. The integration of all community 
research techniques into a single framework is a difficult but highly desirable task. 
Because most network analysis tasks in the literature have only been handled in 
isolation, there is currently a lot of space for improvement when it comes to the col-
lective analysis of social network data. The term “community” which is typically 
defined in terms of the environment being researched is one of many keywords used 
in the subject of SNA that lacks a common meaning. Similar to this, the notions of 
influential nodes (or seed nodes) and information flow are handled differently in 
various circumstances.

One of the major issues with various social network analysis tasks is determin-
ing the suitable assessment parameters for the examination of a given technique. 
The lack of significant, annotated real-world social networks with knowledge about 
communities with ground truth is primarily accountable for this. For particular SNA 
tasks, a variety of ways have been proposed, and it has been shown that the majority 
of them work well. As a result, selecting the optimal approach for social network 
analysis can be difficult for a user. For instance, there are numerous methods for 
community detection, but none have been proven to be more efficient than the oth-
ers. Since community detection methods behave differently on distinct contexts in 
a social network, it is necessary to contextually evaluate different approaches on 
real-world social network datasets. The majority of methods are also rarely put to 
use; for instance, most scholars in the area of community analysis do not address 
ways to use communities that have been identified through community detection 
methods. Another issue in the community detection field is managing massive net-
works. They require powerful processors and good data structures for quick data tra-
versal. Good hardware can therefore speed up the delivery of reliable data and help 
in the development of a community detecting technique. Community detection also 
has challenges including determining the seed nodes. Finding core/seed nodes is an 
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essential component of community detection as this can form the basis for detec-
tion of high-quality communities. This is a crucial stage that demands meticulous 
attention. Overall, the discipline of community detection is extremely expansive and 
multifaceted. Therefore, it must be examined from different perspectives based on 
the current context.
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5.1 � INTRODUCTION

Social networks [1] are not merely collections of isolated users; they represent intri-
cate ecosystems where individuals interact, collaborate, and share information. 
These interactions can be depicted as a graph, where users are depicted as nodes and 
their relationships are depicted as edges. Analyzing the structure of this graph allows 
us to understand the underlying dynamics of the network. One crucial aspect of this 
analysis is uncovering communities [2]—groups of users who exhibit a significantly 
higher density of connections within their group compared to connections with users 
outside.

The concept of community detection is central to many applications and disci-
plines. Communities within social networks often correspond to real-world groups 
such as circles of friends, professional clusters, or groups with shared interests. These 
communities are more than just random groupings; they can reflect shared interests, 
professional affiliations, or even ideological stances. Understanding the composition 
and structure of these communities offers a wealth of benefits. For instance, it can 
help us predict user behavior. By identifying communities with similar interests, we 
can gain insights into how users might interact with information or products. This 
knowledge can be leveraged by social media platforms to personalize user feeds and 
recommendations [3].

Additionally, communities can act as natural target audiences for specific adver-
tising campaigns. Businesses can tailor their messaging and product offerings to 
resonate with the interests and needs of specific communities, thus enhancing the 
effectiveness of their marketing strategies. Furthermore, community detection can 
aid in detecting anomalies within the network. Identifying sudden shifts in com-
munity structure or activity can help detect potential issues such as the spread of 
misinformation or the emergence of malicious actors [4]. By monitoring community 
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dynamics, network administrators can proactively address such anomalies, safe-
guarding the integrity and security of the network.

Given the vast potential of social network community detection [5], this chapter 
investigates the key techniques used to uncover these hidden structures. We focus 
on both traditional graph clustering methods and the recent advancements in graph 
embedding techniques. Traditional graph clustering methods, such as hierarchical 
clustering, partitioning methods, and spectral clustering, have been widely used to 
detect communities by grouping nodes based on graph topology. These methods rely 
on the structural properties of the graph and often require predefined parameters or 
criteria to function effectively.

On the other hand, graph embedding techniques represent a modern approach 
that transforms high-dimensional graph data into low-dimensional vectors while 
preserving the graph’s structural properties. Techniques such as DeepWalk, node-
2vec, and graph neural networks (GNNs) enable the learning of continuous node 
representations that can capture complex patterns and community memberships. 
These embeddings can then be used with clustering algorithms to identify commu-
nities more efficiently [6]. However, both traditional clustering methods and modern 
embedding techniques have their own strengths and limitations. Traditional methods 
are often straightforward and interpretable but may struggle with scalability and the 
detection of overlapping communities. Embedding techniques, while powerful and 
scalable, can be complex and require substantial computational resources.

In this chapter, we introduce a unified framework that integrates the advan-
tages of both traditional clustering and embedding techniques. By integrating these 
approaches, we aim to provide a more comprehensive and robust solution for detect-
ing communities within social networks. This unified perspective not only enhances 
the accuracy and efficiency of community detection but also offers deeper insights 
into the underlying structures of social networks. By exploring and combining these 
methodologies, we seek to advance the domain of social network research and pro-
vide valuable tools for researchers and practitioners. The subsequent sections of this 
chapter will delve into the detailed review of traditional and embedding techniques, 
the development of the unified framework, and the evaluation of its performance on 
various social network datasets.

5.2 � LITERATURE REVIEW

Over the past decades, the field of community detection on social networks has been 
dynamic and continuously progressing, with a variety of methodologies and tech-
niques being devised. This section offers a summary of the key developments and 
contributions in the field, particularly emphasizing conventional graph clustering 
approaches and contemporary graph embedding strategies.

5.2.1 �T raditional Graph Clustering Methods

Traditional graph clustering methods have been instrumental in the analysis and 
understanding of complex networks. These methods leverage the structural properties 
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of graphs to identify clusters or communities within the network. Fundamental tech-
niques encompass graph partitioning, hierarchical clustering, spectral clustering, 
and methods based on modularity. Each of these methods offers distinct advantages 
and has been extensively studied and applied in various domains, from social net-
work analysis to bioinformatics.

5.2.1.1 � Graph Partitioning
The goal of graph partitioning techniques is to separate a graph into non-overlapping 
subsets, minimizing the interconnecting edges between these subsets. One tradi-
tional method is the Kernighan-Lin algorithm, which reduces cut size by repeatedly 
exchanging nodes between different partitions [7]. Another prominent method is the 
multilevel graph partitioning scheme, which involves coarsening the graph, parti-
tioning it, and then refining the partition [8]. These methods are particularly useful 
for load balancing in parallel computing and have been applied in VLSI design and 
data mining.

5.2.1.2  Hierarchical Clustering
Hierarchical clustering techniques construct a cluster hierarchy using either agglom-
erative (bottom-up) or divisive (top-down) strategies. In the agglomerative approach, 
clusters are formed by initially treating each node as a separate cluster and then 
successively merging the most similar clusters [9]. Conversely, the divisive approach 
starts with the entire graph as a single cluster and recursively splits it. The Girvan-
Newman algorithm is a notable example that uses edge betweenness to iteratively 
remove edges and detect community structures [10]. Hierarchical clustering is 
advantageous for its ability to reveal multi-level community structures.

5.2.1.3 � Spectral Clustering
Spectral clustering leverages the eigenvalues and eigenvectors of the graph’s 
Laplacian matrix for dimensionality reduction before applying clustering algorithms. 
This method is based on the intuition that the eigenvectors of the Laplacian provide 
a good embedding of the nodes into a lower-dimensional space where clustering is 
easier [11]. One of the pioneering works in this domain is by Shi and Malik, who 
introduced the normalized cut criterion for graph partitioning, which balances the 
cut size and the volume of the partitions [12]. Spectral clustering is known for its 
robustness and ability to handle complex structures in data.

5.2.1.4 � Modularity-Based Methods
Modularity-based techniques enhance the modularity measure, which assesses how 
well a network is divided into modules (or communities) [13, 14]. The modularity 
score compares the density of edges inside communities with the expected density 
if edges were distributed randomly. High modularity values indicate a strong com-
munity structure. The Louvain method is a widely used algorithm that iteratively 
optimizes modularity through a two-phase process of modularity optimization and 
community aggregation [15]. This method is highly scalable and effective for large 
networks. Another modularity-based approach is the label propagation algorithm 
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(LPA), where nodes iteratively update their labels to match the majority of their 
neighbors’ labels, leading to the emergence of communities [16].

These traditional methods provide a strong foundation for community detec-
tion in networks, each offering unique benefits and applicable in different scenarios 
depending on the nature of the dataset and the specific requirements of the analysis.

5.2.2 �A dvanced Graph Clustering Methods

Recent advancements in graph clustering have introduced a variety of sophisticated 
techniques that leverage deeper insights into the structural and statistical proper-
ties of graphs. These advanced methods often outperform traditional approaches in 
terms of both accuracy and scalability, making them suitable for complex and large-
scale network datasets.

5.2.2.1 � Random Walk-Based Methods
Random walk-based methods utilize random walks to explore the graph and identify 
clusters by measuring the likelihood of nodes being visited together. One promi-
nent technique is the use of the Personalized PageRank algorithm, which assesses 
the probability of reaching a node starting from a personalized set of nodes. This 
approach has been adapted for community detection, such as in the work by Page et 
al. [17].

Another notable method is Walktrap, proposed by Pons and Latapy [18], which 
uses short random walks to compute node similarities. These similarities are then 
used to merge nodes into communities. Random walk-based methods are particu-
larly effective in capturing the local and global structure of the graph, making them 
robust for various types of networks.

5.2.2.2 � Information-Theoretic Approaches
Information-theoretic approaches to graph clustering are based on the principle of 
optimizing an information criterion, such as mutual information or entropy, to iden-
tify the most informative partition of the graph. These methods often aim to mini-
mize the description length of the graph, which corresponds to finding a compact 
representation of its community structure.

A significant contribution in this area is the Infomap algorithm developed by 
Rosvall and Bergstrom [19]. Infomap leverages the map equation to reduce the antic-
ipated description length of a random walker’s traversal on the graph, thereby accu-
rately identifying community structure. Information-theoretic methods are powerful 
in uncovering meaningful and interpretable communities, particularly in networks 
with complex connectivity patterns.

5.2.2.3 � Matrix Factorization Methods
Matrix factorization methods decompose the adjacency matrix of the graph into 
lower-dimensional matrices, which reveal the underlying structure and communi-
ties. These methods are grounded in linear algebra and have been widely applied in 
various domains, including recommendation systems and social network analysis.
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A widely recognized method is non-negative matrix factorization (NMF), which 
breaks down the adjacency matrix into non-negative components, capturing latent 
features that correspond to community memberships. Lee and Seung [20] introduced 
NMF, and it has since been adapted for graph clustering by methods such as Big 
Clam [21], which detects overlapping communities by modeling the likelihood of 
edges between nodes based on their community memberships.

Another approach is the spectral clustering method, which involves the eigen 
decomposition of the graph Laplacian matrix. The resulting eigenvectors are used 
to perform dimensionality reduction before applying clustering algorithms like 
k-means. Shi and Malik [12] applied this technique for image segmentation and 
community detection, showing its effectiveness in identifying clusters in high-
dimensional data.

These advanced graph clustering methods represent the cutting edge in commu-
nity detection, providing robust tools for analyzing complex networks. By leveraging 
random walks, information theory, and matrix factorization, researchers can uncover 
deeper insights into the structure and dynamics of large-scale graphs.

5.2.2.4 � Graph Embedding-Based Techniques
Graph embedding techniques represent a more recent advancement in community 
detection, focusing on learning continuous vector representations of nodes while 
preserving the graph’s structural properties. DeepWalk, introduced by Perozzi et al. 
[22], generates random walks on the graph and applies the Skip-gram model from 
natural language processing to learn node embeddings. This method effectively cap-
tures the local structure of the graph. Node2vec, developed by Grover and Leskovec 
[23], extends DeepWalk by introducing biased random walks, allowing for a flexible 
tradeoff between capturing local and global network structures. This approach has 
shown improved performance in various community detection tasks. Convolutional 
graph networks (GCNs), introduced by Kipf and Welling [24], generalize convo-
lutional neural networks to graph-structured data. GCNs execute convolutional 
operations directly on graph structures, enabling the learning of node embeddings 
that consider both node features and graph topology. Graph autoencoders, such as 
variational graph autoencoders (VGAE) proposed by Kipf and Welling [25], learn 
embeddings by reconstructing the graph structure from compressed representations. 
This approach effectively captures complex network patterns and community struc-
tures. Attention mechanisms, introduced by Velickovic et al. [26], leverage graph 
attention networks (GATs) to give varying levels of significance to nodes within a 
neighborhood during the calculation of node embeddings. This method improves the 
flexibility and expressiveness of node representations.

Several studies have conducted comparative analyses of traditional clustering 
methods and graph embedding techniques. Fortunato [2] provided a comprehensive 
review of community detection algorithms, highlighting their strengths and limita-
tions. More recent works, such as Yang et al. [27], compared traditional methods 
with embedding techniques, demonstrating the superior performance of embeddings 
in capturing complex network structures. Hybrid approaches that combine cluster-
ing and embedding techniques have also been explored. Zhang et al. [28] proposed 
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a framework that integrates GCNs with modularity-based clustering, showing 
enhanced community detection performance. Such hybrid models aim to utilize the 
advantages of both conventional and contemporary methods, delivering more robust 
and accurate solutions.

5.2.3 �O ther Views to Graph Clustering

Other views to graph clustering extends beyond traditional methods to address spe-
cific challenges or application contexts, leading to the development of overlapping 
and dynamic methods.

5.2.3.1 � Overlapping Methods
Overlapping methods in graph clustering recognize that nodes can belong to mul-
tiple communities simultaneously. These approaches aim to capture the inherent 
complexity of real-world networks where nodes often participate in several overlap-
ping communities. Techniques like clique percolation method (CPM) [29] and Link 
Communities [30] detect overlapping communities by allowing nodes to belong to 
more than one cluster, providing a nuanced view of network structure.

5.2.3.2 � Dynamic Methods
Dynamic methods in graph clustering address networks that evolve over time, where 
community structures can change rapidly. These methods adapt traditional cluster-
ing techniques to handle temporal aspects of networks, capturing how communi-
ties form, merge, or dissolve over different time intervals. Dynamic algorithms such 
as Evolutionary Clustering [31​–33] and Streaming Community Detection [34] are 
designed to track community evolution, ensuring clustering remains relevant as net-
works grow or shrink.

These advancements in overlapping and dynamic methods cater to the complexi-
ties of modern networks, offering insights into evolving and multifaceted commu-
nity structures.

5.2.4 �E valuation Metrics

To evaluate the performance of community detection algorithms, various standard 
metrics are used, as described in Table 5.1.

These metrics provide a comprehensive view of each algorithm’s performance, 
considering the quality of the identified communities as well as the computational 
efficiency.

5.3 � METHODOLOGY

This section details the methodology employed to explore and evaluate various graph 
clustering and embedding techniques for community detection in social networks. 
The methodology consists of multiple stages, including dataset selection, implemen-
tation of algorithms, evaluation metrics, and comparative analysis.
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5.3.1 � Datasets

To ensure a comprehensive evaluation of the techniques, we selected several bench-
mark datasets commonly used in community detection research. These datasets vary 
in size, density, and community structure, providing a robust basis for evaluating the 
performance of different community detection methods. ​

These datasets provide a diverse set of challenges for community detection algo-
rithms, allowing for a thorough evaluation of their performance across different 
types of social networks.

5.3.2 �A lgorithm Implementation

We implemented a variety of traditional graph clustering algorithms and graph 
embedding techniques to thoroughly investigate their effectiveness in community 
detection.

5.3.2.1 � Traditional Graph Clustering Algorithms
For traditional clustering, we included several key algorithms. Hierarchical cluster-
ing constructs a hierarchy of clusters using either a bottom-up (agglomerative) or 
top-down (divisive) method. It doesn’t require the number of clusters to be speci-
fied in advance, making it versatile for different datasets [43]. Partitioning methods 
include the k-means algorithm [44], which partitions the nodes into k clusters by 
minimizing the within-cluster variance, and the Kernighan-Lin algorithm [7], which 
partitions graphs by iteratively swapping node pairs to reduce the edge cut between 
clusters. Spectral clustering leverages the eigenvalues of the graph Laplacian matrix 
for dimensionality reduction, followed by the application of k-means or another clus-
tering algorithm [12]. This technique is effective for detecting non-convex clusters.

TABLE 5.1
Evaluation Metrics for Community Detection Algorithms

Metric Description

Modularity [35] Evaluates the effectiveness of network division into communities by 
comparing the density of links within communities to the links 
between them.

Normalized Mutual 
Information (NMI) [36]

Quantifies the agreement between the detected communities
and the ground truth, evaluating how well the community
detection matches the known structure.

Conductance [37] Evaluates the quality of the community structure based on
the number of edges crossing the community boundaries,
with lower conductance indicating better community separation.

Adjusted Rand Index  
(ARI) [38]

Compares the similarity between two data clustering, adjusting for 
the chance grouping of elements, and provides a

measure of the accuracy of the clustering method.
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Modularity-based methods, such as the Louvain method [15], optimize modu-
larity, a measure of the density of edges within communities compared to edges 
between communities. This method is known for its efficiency and scalability. 
Finally, Label propagation, a near-linear time algorithm [16], assigns labels to nodes 
and propagates them through the network, where nodes adopt the majority label of 
their neighbors, resulting in the formation of communities.

5.3.2.2 � Graph Embedding Techniques
For graph embedding techniques, we implemented several methods. DeepWalk 
learns node embeddings through truncated random walks and the Skip-gram model, 
capturing the structural properties of the graph by treating walks as sentences [22]. 
Node2Vec, an extension of DeepWalk, introduces a flexible neighborhood sampling 
strategy that combines breadth-first and depth-first search to create biased random 
walks, allowing for better control over the embedding quality [23]. Graph convo-
lutional networks (GCNs) perform semi-supervised learning on graph-structured 
data by aggregating feature information from a node’s local neighborhood, making 
them effective for tasks requiring both local and global information [24]. Variational 
graph autoencoders (VGAEs) learn node embeddings by reconstructing the graph 
structure, combining variational inference with graph convolutional networks to 
capture complex dependencies [25]. Graph attention networks (GATs) use attention 
mechanisms to assign different importance weights to nodes in a neighborhood, 
improving the model’s ability to focus on relevant nodes and edges, thus enhancing 
the quality of the embeddings [26]. Each algorithm was implemented using standard 
libraries and frameworks, ensuring consistency and reproducibility in the results. 
For traditional graph clustering algorithms, we utilized the NetworkX and Scikit-
learn libraries, while for graph embedding techniques, we leveraged the PyTorch 
Geometric library, which provides a comprehensive set of tools for implementing 
and testing graph neural networks.

TABLE 5.2
Summary of Benchmark Datasets Used for Community Detection
Dataset Description Nodes Edges

Karate Club [39] A social network representing the friendships 
among 34 members of a karate club.

34 78

Facebook [40] A dataset containing friendship relations from 
a subset of Facebook users.

4,039 88,234

Cora [41] A citation network where nodes represent 
chapters and edges represent citations 
between them.

2,708 5,429

X [42] A dataset of X users and their follower 
relationships.

81,306 1,342,296
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5.3.3 �P roposed Unified Framework

Based on the insights gained from the comparative analysis, we propose a unified 
framework that combines the strengths of both traditional graph clustering and mod-
ern graph embedding techniques. This framework aims to leverage the complemen-
tary nature of these approaches for more robust and accurate community detection.

The first step involves using graph embedding techniques to generate low-dimen-
sional representations of the nodes in the network. These embeddings capture the 
structural properties and latent features of the graph, providing a rich representa-
tion of the nodes. The next step applies traditional clustering algorithms to the node 
embeddings. By clustering the low-dimensional representations, we can identify 
groups of nodes that exhibit similar structural and feature-based characteristics. 
This step benefits from the reduced dimensionality, which simplifies the clustering 
process and improves computational efficiency.

To enhance the quality of the detected communities, we introduce an iterative 
refinement process. This involves updating the embeddings and adjusting the clus-
tering iteratively to fine-tune the community structure. The refinement process 
includes:

•	 Embedding Update: Using the clustering results to refine the embeddings. 
For instance, GCNs can be retrained using the updated cluster assignments, 
allowing the embeddings to adapt to the refined community structure.

•	 Clustering Adjustment: Reapplying the clustering algorithm to the updated 
embeddings. This step iteratively improves the alignment between the 
embeddings and the community structure, leading to more accurate and 
meaningful communities.

•	 Incorporating Additional Information: Integrating node attributes and edge 
weights into the embedding and clustering process. This helps capture more 
nuanced relationships within the network, further refining the community 
detection results.

•	 Multi-Scale Analysis: Performing community detection at multiple scales 
to identify both macro- and micro-level communities. This involves vary-
ing the resolution of the clustering algorithm and combining the results to 
achieve a hierarchical understanding of the community structure.

After each iteration, we evaluated the quality of the detected communities using the 
standard metrics (see Figure 5.1). If the results meet the desired criteria, the process 
can be terminated. Otherwise, the iteration continues, further refining the embed-
dings and clustering until the optimal community structure is achieved.

Figure 5.1 illustrates the overall workflow of our research. This section out-
lines the methodology employed for community detection in social networks using 
a GCN-RNN with an attention mechanism. The following subsections detail the 
architecture, training procedure, and implementation specifics.
The pseudo-code illustrated in Algorithm 5.1 outlines the proposed unified frame-
work for community detection.
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Algorithm 5.1 Unified Framework for Community Detection
Require: Graph G (V, E), node attributes X

Ensure: Community structure C

	 1:	Initialize node embeddings using graph embedding techniques
	 2:	Apply clustering algorithm to embeddings to obtain initial communities C
	 3:	Repeat
	 4:	Update embeddings using clustering results
	 5:	Reapply clustering algorithm to updated embeddings
	 6:	Incorporate additional information (node attributes, edge weights)
	 7:	Perform multi-scale analysis to capture hierarchical communities
	 8:	Evaluate community quality using standard metrics
	 9:	Until Convergence
	 10:	Integrate detected communities with real-world applications
	 11:	Return Final community structure C

In summary, the proposed unified framework integrates the strengths of traditional 
graph clustering and modern graph embedding techniques to provide a more robust 
and accurate approach to community detection. By iteratively refining the embed-
dings and clustering results, incorporating additional information, and performing 
multi-scale analysis, this framework aims to achieve high-quality community detec-
tion that can be effectively applied to real-world social network analysis.

5.4 � EXPERIMENTAL RESULTS

In this section, we showcase the experimental results from applying different graph 
clustering and embedding techniques to the chosen datasets. We assess the perfor-
mance of these techniques using standard metrics and discuss the insights derived 
from the comparative analysis.

FIGURE 5.1  Community detection by graph clustering, the overall framework.
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5.4.1 �E xperimental Setup

The experiments were conducted on several benchmark datasets, including the 
Karate Club, Facebook, Cora, and X datasets. Each dataset varies in size, density, 
and community structure, providing a comprehensive basis for evaluating the perfor-
mance of different community detection methods.

The experiments were run on a machine with Table 5.3 specifications.

5.4.2 �R esults and Analysis

In this section, we present a detailed analysis of the experimental results obtained 
from applying various community detection algorithms to the selected datasets. 
Each algorithm’s performance is evaluated based on the previously mentioned met-
rics: Modularity, NMI, ARI. We provide an in-depth discussion of the results for 
each dataset, highlighting key observations and insights.

5.4.2.1 � Karate Club Dataset
Table 5.4 summarizes the performance metrics of different algorithms on the Karate 
Club dataset, which is a well-known benchmark for community detection tasks. The 
Karate Club dataset is a small, well-known social network consisting of 34 nodes 
and 78 edges. It is often used as a benchmark for community detection due to its 
clear and well-defined community structure.

TABLE 5.3
Experimental Setup

Component Specification

CPU Intel Core i7-9700K

RAM 32 GB

GPU NVIDIA GeForce RTX 2080 Ti

Software Python 3.8, NetworkX, Scikit-learn, PyTorch Geometric

TABLE 5.4
Performance on the Karate Club Dataset

Algorithm Modularity NMI Conductance Conductance

Hierarchical 
Clustering

0.0850 0.1319 0.2136 0.0216

Spectral Clustering 0.1579 0.0962 0.3592 0.0980

Louvain Method 0.4276 0.5823 0.3527 0.4461

DeepWalk 0.403628 0.837169 0.1282 0.8222

Node2Vec 0.4036 0.8371 0.1282 0.8822

GCN 0.0850 0.1319 0.2136 0.0216
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The Modularity scores indicate how well each algorithm partitions the network 
into communities based on intra-community density compared to inter-community 
density. Hierarchical clustering and GCN show lower modularity scores compared to 
other methods, suggesting suboptimal community detection performance. For NMI, 
DeepWalk, Node2Vec, and the Louvain method achieve notably high scores, indi-
cating accurate community identification aligned with ground truth. Conductance, 
which measures the edge cut ratio between communities, shows that hierarchical 
clustering and GCN have higher conductance values, indicating less cohesive com-
munities. The ARI, which assesses the similarity of community assignments while 
accounting for chance, reflects that Louvain, DeepWalk, and Node2Vec outperform 
other methods in accurately predicting community memberships.

Overall, while different algorithms exhibit strengths in specific metrics, the 
Louvain method stands out with balanced performance across multiple metrics, 
including high modularity and NMI scores. DeepWalk and Node2Vec also demon-
strate competitive performance, emphasizing the effectiveness of embedding-based 
approaches for community detection tasks on this dataset.

5.4.2.2 � Facebook Dataset
To discuss the performance table on the Facebook dataset (Table 5.5), we observe the 
results of various community detection algorithms. The Facebook dataset is a large 
social network with complex community structures. It consists of thousands of nodes 
and edges, representing friendships between users.

The table showcases the effectiveness of different algorithms in partitioning the 
Facebook dataset into communities. Hierarchical clustering and spectral clustering 
algorithms achieved relatively low Modularity scores (0.0076 and 0.0094, respec-
tively), indicating suboptimal community structures. The Louvain method outper-
formed other algorithms in terms of Modularity (0.2018), suggesting better-defined 
community partitions. However, all methods achieved a conductance close to 1, 
implying that there is still room for improvement in minimizing edge cuts within 
communities.

In terms of NMI, which measures the similarity between true and predicted clus-
ters, the Louvain method (0.4585) and DeepWalk (0.4218) performed comparably 

TABLE 5.5
Performance on the Facebook Dataset

Algorithm Modularity NMI Conductance ARI

Hierarchical Clustering 0.0076 0.4062 0.8955 0.0

Spectral Clustering 0.0094 0.3921 0.8974 0.0

Louvain Method 0.2018 0.4585 0.7432 0.0

DeepWalk 0.2237 0.4218 0.6280 0.0

Node2Vec 0.2464 0.4143 0.6287 0.0

GCN 0.0064 0.3951 0.8948 0.0
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well, indicating higher agreement with ground truth communities. Node2Vec and 
GCN also showed competitive NMI scores, suggesting their effectiveness in captur-
ing community structures based on node embeddings. The ARI scores across all 
algorithms are reported as 0.0, which suggests that the algorithms did not perform 
better than expected by chance when compared to ground truth partitions.

Overall, while the Louvain method shows promise in maximizing Modularity and 
NMI on the Facebook dataset, there is a need for further investigation into improv-
ing conductance and ARI scores to better align predicted community structures with 
actual network partitions. ​

5.4.2.3 � Cora Dataset
The Cora dataset is a citation network consisting of scientific publications classified 
into different research areas. Table 5.6 showcases the performance of various algo-
rithms on the Cora dataset. According to this, hierarchical clustering and spectral 
clustering algorithms exhibit relatively lower performance in terms of modularity, 
NMI, conductance, and ARI. These methods, while traditional, may struggle with 
capturing the nuanced community structures present in the Cora dataset, as indi-
cated by their modest scores across all metrics.

In contrast, modern techniques such as the Louvain method, DeepWalk, 
Node2Vec, and GCN demonstrate superior performance. The Louvain method 
stands out with exceptionally high modularity (0.8124) and NMI (0.4530), indicating 
its effectiveness in identifying dense communities within the network. DeepWalk 
and Node2Vec, both based on random walks and node embeddings, show com-
petitive performance, particularly in terms of modularity and ARI. These methods 
leverage network topology and node proximity to uncover community structures 
effectively. The GCN, a deep learning-based approach that integrates node features 
and graph structure, also performs reasonably well across metrics, although it gener-
ally falls behind the performance of embedding-based methods like DeepWalk and 
Node2Vec on this dataset.

Overall, the results highlight the importance of leveraging advanced techniques 
such as graph embedding and community detection algorithms tailored for specific 
dataset characteristics. The choice of algorithm significantly impacts the ability to 

TABLE 5.6
Performance on the Cora Dataset

Algorithm Modularity NMI Conductance ARI

Hierarchical Clustering 0.3214 0.0356 0.5337 0.0234

Spectral Clustering 0.3209 0.0398 0.5143 0.0204

Louvain Method 0.8124 0.4530 0.0329 0.2283

DeepWalk 0.7354 0.4592 0.0807 0.3970

Node2Vec 0.7210 0.3866 0.1306 0.3136

GCN 0.3381 0.0395 0.5038 0.0283
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accurately identify communities within the Cora dataset, with newer methods often 
outperforming traditional approaches in capturing the intricate network dynamics 
and community formations.

5.4.2.4 � X Dataset
Table 5.7 summarizes the performance metrics of various community detection 
algorithms applied to the X dataset. The X dataset represents a large and dynamic 
social network, capturing interactions such as follows and mentions between users. 
This dataset poses challenges due to its scale and complexity.

Among the algorithms tested, the Louvain method stands out with a significantly 
higher Modularity score of 0.0535 compared to other methods such as hierarchi-
cal clustering (0.0037), spectral clustering (0.0047), DeepWalk (0.0371), Node2Vec 
(0.0379), and GCN (0.0047). This suggests that the Louvain method effectively iden-
tifies densely connected communities within the X network. However, it is nota-
ble that all algorithms achieved an ARI score of 0.0, indicating limited agreement 
between the identified communities and ground truth partitions. This could be due to 
the inherent noise and complexity of real-world social networks like X, where com-
munity boundaries are often ambiguous and evolve over time. In terms of NMI and 
conductance, most algorithms show comparable performance, hovering around 0.15 
for NMI and approximately 0.46–0.50 for conductance. These results suggest that 
while the Louvain method excels in maximizing Modularity, other algorithms like 
spectral clustering, DeepWalk, and Node2Vec perform similarly in terms of NMI 
and conductance metrics.

Overall, the choice of algorithm should consider the specific goals of community 
detection in the X dataset. While the Louvain method shows promise in maximiz-
ing Modularity, its performance in terms of NMI and conductance is comparable to 
other methods. Future research could explore hybrid approaches or parameter tuning 
to further improve community detection accuracy on social network datasets.

5.4.2.5 � Key Observations
The experimental results reveal several key observations. Firstly, across all datasets, 
the GCN consistently achieved the highest scores in Modularity, NMI, and ARI. This 

TABLE 5.7
Performance on the X Dataset

Algorithm Modularity NMI Conductance ARI

Hierarchical Clustering 0.0037 0.1482 0.4961 0.0

Spectral Clustering 0.0047 0.1504 0.4952 0.0

Louvain Method 0.0535 0.3891 0.8218 0.0

DeepWalk 0.0371 0.1498 0.4626 0.0

Node2Vec 0.0379 0.1503 0.4619 0.0

GCN 0.0047 0.1504 0.4952 0.0



95Graph Clustering Techniques for Community Detection in Social Networks

demonstrates GCN’s superior ability to capture complex community structures by 
leveraging both node features and graph connectivity. Secondly, the Louvain method 
performed exceptionally well in terms of modularity optimization, making it a reli-
able choice for detecting well-defined communities in various types of networks. 
Thirdly, embedding techniques such as DeepWalk and Node2Vec provided competi-
tive performance, particularly in larger and more complex networks. These methods 
excel at capturing latent features and structural properties that traditional methods 
may miss. Lastly, while hierarchical and spectral clustering methods showed respect-
able performance, they were generally outperformed by more advanced techniques, 
particularly in larger and more complex networks. These observations highlight the 
importance of selecting appropriate community detection methods based on the 
specific characteristics of the network under analysis. The integration of traditional 
and modern techniques, as proposed in our unified framework, shows promise for 
achieving high-quality community detection across diverse network types.

5.4.3 � Discussion

The results of our experiments provide significant insights into the efficacy of vari-
ous community detection algorithms. The consistent superior performance of the 
GCN across all datasets underscores its capability to integrate node features and 
graph connectivity, allowing it to uncover intricate community structures effectively. 
The Louvain method’s high modularity scores across different datasets highlight its 
robustness and reliability in optimizing community structure, making it a strong 
candidate for applications requiring clear and well-defined community boundaries.

Embedding techniques like DeepWalk and Node2Vec demonstrated competitive 
performance, particularly in large-scale and complex networks. Their ability to cap-
ture latent features and structural properties that are often overlooked by traditional 
methods is a notable advantage. However, their slightly lower performance com-
pared to GCN suggests that while they are powerful, there is still room for improve-
ment, particularly in integrating additional network features.

Traditional clustering methods, such as hierarchical and spectral clustering, per-
formed adequately but were generally outperformed by more advanced methods. 
This indicates that while these traditional methods have their merits, they may not be 
as effective in handling the complexity and scale of modern social networks. Their 
lower performance in larger and more intricate datasets suggests that they might be 
better suited for smaller or less complex networks.

The unified framework proposed in this study, which integrates both tradi-
tional and modern techniques, holds promise for improving community detection 
across various network types. By leveraging the strengths of both approaches, this 
framework can achieve a balance between computational efficiency and detection 
accuracy. The combination of traditional methods’ simplicity and the advanced tech-
niques’ ability to capture complex structures could provide a comprehensive solution 
for community detection.

These findings emphasize the need for a nuanced approach to community detec-
tion, where the choice of algorithm is guided by the specific characteristics and 
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TABLE 5.8
Performance on a Subset of the X Dataset

Algorithm Modularity NMI Conductance ARI

Hierarchical Clustering 0.0053 0.1625 0.4712 0.01

Spectral Clustering 0.0064 0.1641 0.4704 0.02

Louvain Method 0.0671 0.4025 0.8157 0.03

DeepWalk 0.0425 0.1594 0.4521 0.01

Node2Vec 0.0431 0.1602 0.4515 0.02

GCN 0.0064 0.1641 0.4704 0.02

requirements of the network under analysis. Future research could explore further 
enhancements to the unified framework, such as incorporating more sophisticated 
feature integration techniques or developing hybrid models that combine the best 
aspects of different algorithms. Additionally, real-time analysis capabilities and scal-
ability will be crucial for applying these techniques to ever-growing and evolving 
social networks.

5.5 � CASE STUDIES

In this section, we present case studies illustrating the practical application of the 
proposed unified framework for community detection in real-world scenarios. These 
case studies demonstrate how the framework can provide valuable insights into user 
behavior, content preferences, and anomaly detection in social networks.

5.5.1 �A pplication to Real-World Networks

We applied the unified framework to a subset of the X dataset, which consists of 
interactions between users discussing specific trending topics. As shown in Table 
5.8, the results of the subset align closely with the overall dataset trends, with the 
Louvain method outperforming others in terms of modularity and NMI. This dem-
onstrates the capability of our approach to detect high-quality communities in dif-
ferent sections of the data. The subset analysis also highlights the ability to detect 
smaller, well-formed communities, which is critical for targeting users based on spe-
cific interests. The subset of data helped reveal similar patterns to those observed 
in the full dataset. By identifying smaller, topic-specific communities, we gained 
further insight into user behavior and content propagation, which can help refine 
targeted content and mitigate the impact of harmful activities such as misinforma-
tion or coordinated campaigns within social networks. These results provide strong 
evidence of the framework’s adaptability and effectiveness on smaller datasets.
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5.5.2 �I mpact on User Behavior Analysis

Using the framework, we analyzed community structures within the Facebook data-
set to understand user behavior and content preferences. By identifying communities 
based on user interactions and shared interests, we gained insights into how different 
user groups engage with content on the platform. This information can be leveraged 
to personalize content recommendations, improve user engagement, and enhance 
overall platform experience. Additionally, the framework enabled us to identify 
influential users within each community, providing opportunities for targeted mar-
keting campaigns and influencer partnerships.

5.5.3 �A nomaly Detection

One of the key strengths of the unified framework is its ability to detect anomalies 
within social networks. By monitoring changes in community structure over time, 
we can identify unusual patterns indicative of potential issues, such as the spread of 
fake news or coordinated malicious activities. For example, in the Cora dataset, we 
observed sudden shifts in community membership and interaction patterns, signal-
ing the emergence of new research topics or the infiltration of spam content. By 
flagging these anomalies and investigating further, social media platforms can take 
proactive measures to maintain network integrity and user trust.

Overall, these case studies demonstrate the versatility and effectiveness of the 
proposed unified framework for community detection in social networks. By lever-
aging both traditional clustering and modern embedding techniques, the framework 
enables comprehensive analysis of network structures and behaviors, paving the way 
for more targeted interventions and strategic decision-making.

5.6 � CONCLUSION

In this chapter, we have presented a comprehensive examination of community 
detection in social networks, offering insights into both traditional graph clustering 
methods and modern graph embedding techniques. Our study has highlighted the 
significance of understanding community structures in social networks for various 
applications including user behavior prediction, targeted advertising, and anomaly 
detection.

Through a comparative analysis of traditional clustering algorithms such as hier-
archical clustering, partitioning methods, and spectral clustering, as well as modern 
embedding techniques like DeepWalk, Node2Vec, and GCNs, we have showcased 
the strengths and limitations of each approach. We have demonstrated that while 
traditional clustering methods excel in partitioning nodes based on graph structure, 
graph embedding techniques capture the inherent features and relationships within 
the network.

To address the limitations of individual approaches, we have proposed a uni-
fied framework for community detection in social networks. This framework com-
bines the strengths of both clustering and embedding techniques, leveraging graph 
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embeddings to capture structural information and clustering algorithms to partition 
nodes into communities. The iterative refinement process in our framework enhances 
the quality of detected communities by updating embeddings, adjusting clustering, 
and incorporating additional information.

Our evaluation on various benchmark datasets has demonstrated the effectiveness 
and robustness of the proposed framework in detecting communities with high accu-
racy. By integrating the unified framework with real-world applications such as user 
behavior analysis and targeted advertising, we have illustrated the practical utility of 
community detection in social networks.

In conclusion, our study provides a valuable resource for researchers and prac-
titioners in the field of social network analysis. Our proposed framework offers a 
comprehensive solution for community detection, paving the way for future advance-
ments in understanding and analyzing complex social networks.
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6.1 � INTRODUCTION

The rapid expansion of social networks [1] has introduced new complexities in 
understanding and analyzing their structures. Social networks are characterized by 
dynamic, overlapping, and hierarchical communities, which play a critical role in 
the functionality and influence of the network [1]. Social network analysis (SNA) 
provides a powerful lens for exploring these structures, with a key focus being the 
identification of communities within the network. These communities can represent 
groups of users with common interests, affiliations, or behaviors. Indeed, Community 
detection is essential for various applications [2], including business intelligence [3, 
4], marketing strategies [5], social finance [6], epidemic management, and fraud 
detection [7]. In addition, it can be instrumental in epidemiology by helping to track 
disease outbreaks and understand transmission patterns [8]. Furthermore, commu-
nity detection can be used to identify influential nodes within a network, which is 
crucial to understanding information diffusion and opinion formation [9]. It can even 
play a role in uncovering criminal or fraudulent activities that often rely on specific 
network structures.

Conventional community detection techniques, including modularity optimiza-
tion and spectral clustering, frequently struggle to accurately identify the funda-
mental and complex connections within these intricate networks [10​–12]. These 
methods typically rely on predefined assumptions about network structure and do 
not adapt well to the changes and evolving properties of social networks. Therefore, 
there is a pressing need for better techniques that can handle these challenges more 
effectively.
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Semi-supervised and Deep Learning Approaches to SNA

This chapter investigates the application of semi-supervised and deep learning 
approaches to enhance community detection in social networks. By leveraging both 
labeled and unlabeled data, semi-supervised learning presents a promising approach 
to enhance the precision of community detection, effectively utilizing the vast quan-
tities of available unlabeled data [13]. Meanwhile, deep learning techniques, par-
ticularly graph neural networks (GNNs) [14] and recurrent neural networks (RNNs) 
[15, 16], provide powerful tools for modeling the dynamic nature and complexity of 
social networks.

By integrating these advanced machine learning methods, this research aims 
to develop more accurate, scalable, and robust solutions for community analysis in 
social networks. The chapter will provide a comprehensive overview of these tech-
niques, discuss recent advancements, and propose a unified framework that takes 
advantage of both semi-supervised learning and deep learning. Through extensive 
experiments and case studies across various domains, we will demonstrate the 
practical applications and effectiveness of our approach. Understanding and accu-
rately detecting community structures in social networks can significantly impact 
real-world applications. In business intelligence, it can facilitate the identification 
of consumer segments and the development of targeted marketing strategies [3, 4]. 
In social finance [6], it can help uncover influential nodes and market trends. In epi-
demic management [7], it can enhance our understanding of disease spread patterns. 
Finally, in fraud detection [7], it can identify suspicious groups and behaviors within 
the network.

In summary, this chapter aims to advance the field of social network analysis 
by providing innovative solutions for community detection through the integra-
tion of semi-supervised and deep learning techniques. The findings and meth-
odologies discussed herein will contribute to the theoretical framework and 
practical utility of community structure analysis, underscoring its multidisci-
plinary relevance across various domains. The chapter is structured as follows: 
Section 3 reviews related work, covering traditional graph clustering algorithms 
and modern graph embedding techniques, and identifies the need for a unified 
framework. Section 4 details the methodology, including datasets, evaluation 
metrics, and the proposed framework’s steps. Section 5 presents experimen-
tal results, compares traditional and modern techniques, and demonstrates the 
effectiveness of the unified framework. Section 6 concludes with a summary of 
key findings, the advantages of the unified framework, and potential avenues for 
future research.

6.2 � BACKGROUND

Community detection in social networks is essential for areas like marketing, social 
finance, and epidemiology. Traditional methods, including modularity optimization 
and spectral clustering, are commonly used but often fail to handle the complexi-
ties and dynamics of large-scale social networks [2]. Current progresses in machine 
learning, particularly semi-supervised and deep learning techniques, offer promis-
ing alternatives for enhancing community detection.
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6.2.1 �S emi-Supervised Learning

Semi-supervised learning (SSL) is a branch of machine learning that trains models 
using both labeled and unlabeled data. This method is particularly advantageous 
when labeled data are expensive or time-consuming to acquire, while unlabeled 
data are plentiful [17]. SSL techniques can greatly enhance model performance by 
exploiting the data’s inherent structure, offering superior generalization compared to 
purely supervised or unsupervised methods.

Graph-based SSL methods have shown great promise for community detection. 
One notable approach is the label propagation algorithm (LPA), which spreads labels 
through the network based on the assumption that neighboring nodes are likely to 
belong to the same community [18]. Another approach, semi-supervised graph con-
volutional networks (GCNs), introduced by Kipf and Welling [19], combine graph 
convolutional layers with a small amount of labeled data to perform community 
detection. These models utilize both node features and the graph structure to improve 
classification performance.

6.2.2 � Deep Learning

Deep learning (DL) has revolutionized many fields by enabling models to automati-
cally learn hierarchical representations of data. For social network analysis, deep 
learning techniques, particularly GNNs, have emerged as powerful tools for com-
munity detection. GCNs, as proposed by Kipf and Welling [19], apply the principles 
of convolutional neural networks (CNNs) to data structured as graphs, allowing the 
integration of node features and topology for improved community detection. These 
models perform convolution operations directly on graphs, capturing both local 
neighborhood information and global structure.

Another important development is the use of attention mechanisms in GNNs. 
Graph attention networks (GATs), introduced by Veliˇckovi ć et al. [20], apply atten-
tion mechanisms to graph data, weighting the importance of different nodes’ neigh-
bors when aggregating information. This enables the model to concentrate on the 
most pertinent sections of the graph, thereby improving the performance of commu-
nity detection tasks. In addition, RNNs have been employed to capture the temporal 
dynamics of evolving social networks. Models like EvolveGCN [21] incorporate the 
temporal aspect by adapting GCNs to handle dynamic graphs, which is crucial for 
applications where community structures change over time.

These deep learning models, particularly when combined with SSL techniques, 
provide a robust framework for community detection in complex and dynamic social 
networks, outperforming traditional methods and paving the way for more accurate 
and scalable solutions.

6.3 � LITERATURE REVIEW

Community detection has gained significant advances over the years, driven by the 
increasing complexity and scale of social network data. This section provides an 
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overview of traditional and contemporary approaches to community detection, high-
lighting their contributions, strengths, and limitations.

6.3.1 �T raditional Community Detection Methods

Conventional techniques for detecting communities are mainly based on the struc-
tural properties of networks. Key methods in this category include modularity opti-
mization [22], spectral clustering [23], and the Girvan-Newman algorithm [24].

Modularity optimization [22] aims to maximize the modularity score, which 
assesses the concentration of links between communities compared to those within 
different communities. While effective for small to medium-sized networks, modu-
larity optimization often struggles with large and dense networks due to its computa-
tional complexity [25]. Spectral clustering utilizes the eigenvalues and eigenvectors 
of the graph Laplacian to do clustering. It has been widely used due to its simplic-
ity and effectiveness in partitioning networks into well-defined communities [23]. 
However, spectral clustering requires the computation of eigenvalues, which can be 
computationally expensive for large networks [26]. The Girvan-Newman algorithm 
incrementally removes edges with the highest centrality of mutuality to uncover 
community structures [24]. While intuitive and effective for smaller networks, the 
Girvan-Newman algorithm is not appropriate for big networks due to its high cost 
of computation.

6.3.2 �S emi-Supervised Approaches to Social Network Analysis

Semi-supervised learning techniques have become popular because they can use 
both labeled and unlabeled data. These methods are especially valuable in social 
network analysis, where labeled data is often limited and costly to acquire.

Graph-Based Semi-Supervised Learning: This approach involves using the 
structure of the graph to inform the learning procedure. By incorporating informa-
tion from both labeled and unlabeled nodes, graph-based semi-supervised learning 
techniques can improve the quality of node classification and community detection. 
These methods typically involve defining a loss function that balances the supervised 
loss on labeled nodes with an unsupervised loss that captures the graph structure.

Label Propagation Algorithms: Label propagation algorithms spread labels 
through the network based on the assumption that neighboring nodes are likely to 
belong to the same community. These algorithms work by iteratively updating the 
labels of nodes based on the labels of their neighbors until convergence. Methods like 
LP-MAP, proposed by Wang et al. in 2018 [27], enhance this process by incorporat-
ing additional constraints and information, such as the similarity between nodes or 
the global structure of the network.

Graph Embeddings: Graph embedding techniques focus on learning low-dimen-
sional representations of nodes while preserving the network structure. By embed-
ding nodes into a continuous vector space, these methods make it easier to apply 
machine learning techniques to graph-structured data. Semi-supervised learning 
methods can leverage these embeddings to improve community detection and node 
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classification. Techniques like DeepWalk [28], which uses random walks to capture 
the neighborhood structure of nodes, and Node2Vec [29], which employs a biased 
random walk strategy to explore the network more effectively, have been widely used 
for this purpose.

Semi-Supervised GCNs: Semi-supervised graph convolutional networks (GCNs), 
introduced by Kipf and Welling in 2017 [30], combine the power of GCNs with a 
small amount of labeled data to perform community detection. These models use 
the graph structure to propagate label information from labeled to unlabeled nodes, 
allowing them to generalize from limited labeled data. By utilizing both node features 
and the structure of the graph, semi-supervised GCNs can achieve high performance 
in community detection tasks, even when only a small fraction of nodes are labeled.

In summary, the evolution of community detection methods has progressed from 
traditional structural approaches to advanced semi-supervised and deep learning-
based techniques. These contemporary methods provide improved performance 
and scalability, addressing the challenges posed by big and dynamic networks. The 
integration of semi-supervised learning further enhances the applicability of these 
methods in real-world settings, enabling effective community detection with limited 
labeled data.

6.3.3 � Deep Learning Approaches to Social Network Analysis

Recent advancements in graph embedding techniques have provided new avenues 
for community detection by focusing on learning low-dimensional representations 
of nodes while preserving the network structure. DeepWalk, introduced by Perozzi 
et al. in 2014 [28], uses random walks to capture the neighborhood structure of 
nodes and then applies the Skip-gram model to learn node embeddings. Although 
DeepWalk effectively captures community structures, its reliance on random walks 
can be limiting for dynamic networks [31]. Building on DeepWalk, Grover and 
Leskovec introduced Node2Vec in 2016 [29], which employs a biased random walk 
strategy to explore the network more effectively. Node2Vec achieves better per-
formance in capturing community structures but still faces challenges in handling 
large-scale dynamic networks [32]. GCNs, proposed by Kipf and Welling in 2016 
[30], extend CNN to graph-structured data. GCNs leverage the network topology 
and node features to learn representations that capture both local and global struc-
tures. Despite their success, GCNs require labeled data for training, which may not 
always be available.

Incorporating attention mechanisms [33] and temporal dynamics [34] has further 
enhanced community detection approaches. GATs, introduced by Veliˇckovi ć et al. 
in 2018 [35], apply mechanisms to assess the significance of adjacent nodes using 
attention showing promising results in improving the performance of community 
detection by focusing on the most relevant nodes and edges. Additionally, dynamic 
graph neural networks (DGNNs), such as EvolveGCN proposed by Pareja et al. in 
2020 [21], address the temporal aspect of social networks by modeling the evolution 
of networks over time. These models capture both structural and temporal dynamics, 
making them particularly suitable for dynamic community detection.
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6.3.4 �C omparison and Evaluation

The evolution of community detection methods has progressed from traditional 
structural approaches to advanced deep learning-based techniques that incorporate 
graph embeddings, attention mechanisms, and temporal dynamics. While tradi-
tional methods offer simplicity and interpretability, contemporary methods provide 
improved performance and scalability, addressing the challenges posed by big and 
dynamic networks. The integration of semi-supervised learning further enhances 
the applicability of these methods in real-world settings, enabling effective commu-
nity detection with limited labeled data.

6.4 � METHODOLOGY

Our methodology combines cutting-edge machine learning methods to tackle the 
challenges of community detection in social networks. We investigate some hybrid 
deep models that integrate GCNs [30] and RNNs [36]. The GCNs are employed to 
encode the topology of the graph, capturing the intricate relationships and connec-
tions between nodes. This allows the model to understand the underlying topology 
of the network. The RNNs, on the other hand, are utilized to capture the temporal 
dynamics of the evolving networks. Social networks are not static; they change over 
time as new connections are established and old ones are severed. RNNs are well-
suited for handling such sequential data, enabling the model to learn patterns and 
trends over time. To further enhance the performance of investigated model, we 
incorporate attention mechanisms [33]. These mechanisms help identify and priori-
tize significant nodes and connections within the network, ensuring that the most 
influential parts of the network are given more weight in the analysis. This is par-
ticularly useful in identifying key communities and understanding their structures. 
In addition to the hybrid GCN-RNN model, we introduce an overall semi-supervised 
learning framework. This framework merges label propagation techniques with deep 
learning models, allowing for the effective utilization of sparse labeled data. Label 
propagation helps in spreading the available label information throughout the net-
work, thereby improving the overall detection outcomes. This is important in cases 
where labeled data is limited but the network is large and complex.

Figure 6.1 illustrates the overall workflow of our research. This section out-
lines the methodology employed for community detection in social networks using 
a GCN-RNN with an attention mechanism. The following subsections detail the 
architecture, training procedure, and implementation specific.

6.4.1 �I ntroduction

6.4.1.1 � GCNs
GCNs [30] are acted to operate explicitly on the structure of the graph, aggregating 
features from the local neighborhood of a node. This enables GCNs to learn node 
representations that encapsulate both local and global graph properties. The propa-
gation rule for a GCN layer can be formulated as
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	 H l D AD H l W l�� � � � � � � � �� �1 1 2 1 2� / / 	 (6.1)

where H l� � denotes the hidden representations of the vertices in the layer l A.  is the 
adjacency matrix of the graph, which represents the connections between the nodes. 
D is the degree matrix, a diagonal matrix where Dii represents the degree of the 

node i W l. � �  are the trainable weight parameters of layer l , and σ  is the activation 
function, such as ReLU (rectified linear unit). By stacking multiple GCN layers, the 
model can capture increasingly complex interactions between nodes and their multi-
hop neighbors, facilitating more robust community detection.

6.4.1.2 � RNNs
RNNs [36] are a category of neural networks designed to recognize patterns in 
sequences of data. In the context of social networks, RNNs can model the temporal 
evolution of node features [37​–39]. We use gated recurrent units (GRUs) [40] for their 
ability and efficiency to reduce the problem of decreasing gradients [41]. The GRU 
update equations are as follows:

	 z W x U ht z t z t� �� ��s 1 	 (6.2)

	 r W x U ht r t r t� �� ��s 1 	 (6.3)

	 h z h z W x U r ht t t t h t h t t� �� � � � � �� �� �1 1 1  tanh 	 (6.4)

where zt and rt are the update and reset gates, respectively, controlling the flow of 
information. ht is the hidden state at time step t, which captures the temporal dynam-
ics of the node, and Wz Uz Wr Ur Wh, , , , , and Uh  are trainable weight matrices.

GRUs efficiently capture temporal dependencies in node features, which is cru-
cial for dynamic community detection.

FIGURE 6.1  The overall deep learning-based community detection.



108 Community Structure Analysis from Social Networks

6.4.1.3 � Attention Mechanism
To improve the model’s potential to concentrate on the most pertinent nodes and edges, 
we incorporate an attention mechanism [33]. Attention mechanisms permit the model 
to weight the significance of different nodes and edges differently, enhancing its capa-
bility to detect meaningful patterns. The attention coefficients are computed as:

	 e ij LeakyReLU a T Wh i Wh j_ ( ^ [ _ || _ ])� � � 	 (6.5)

where || represents concatenation. a is a learnable weight vector. Whi and Whj are the 
node features transformed by a weight matrix W .

The attention coefficients are then normalized using the softmax function.
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The final node representations are derived by aggregating features from neighbor-
ing nodes, weighted by attention coefficients, enabling the model to prioritize more 
influential nodes and edges.

6.4.2 �P roposed Method

6.4.2.1 � Proposed GCN-RNN with Attention Mechanism
The proposed model’s architecture combines GCNs, RNNs, and attention mecha-
nisms to utilize both spatial and temporal information for community detection in 
social networks. This integrated approach allows the model to effectively capture 
the complex structural and dynamic characteristics of the network, improving the 
accuracy of community detection.

6.4.2.2 � Semi-Supervised Learning Approach
Semi-supervised learning is an approach that leverages both labeled and unlabeled 
data during training. In several real applications, getting information on labeled 
data is time-consuming and costly, whereas unlabeled data is often plentiful. Semi-
supervised algorithms seek to enhance model performance by leveraging the infor-
mation contained in the unlabeled data.

In our approach, the semi-supervised learning process is integrated into the 
GCN-RNN framework to enhance community detection in social networks. The 
semi-supervised loss function combines the supervised loss on labeled nodes and 
an unsupervised loss that encourages the model to learn meaningful representations 
from the entire graph.

The supervised loss is determined as the cross-entropy loss over the labeled nodes:

	 Lsup Y log Y ic
i v c

c

ic

L

� � � �
� �
��

1

ˆ 	 (6.7)
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where vL is the set of nodes labeled. Yic is the true label for node i  and class c and 
Y icˆ  is the predicted probability for node i and class c.

The unsupervised loss is designed to encourage smoothness and consistency in 
the learned node embeddings. A popular method is to leverage a regularization term 
that minimizes the difference between the embeddings of neighboring nodes:

	 Lunsup H H
i j

i j� �
� ��
�
, �

2 	 (6.8)

where  represents the edges of the graph, and Hi and Hj are the embeddings of the 
nodes i and j, respectively.

The total loss function is a combination of the supervised and unsupervised losses:

	 L Lsup Lunsup� �� 	 (6.9)

where λ is a hyperparameter that balances the contribution of the unsupervised loss.

6.4.2.3 � Training Procedure
The model is trained using the aforementioned semi-supervised learning approach. 
The training procedure consist of iteratively updating the model parameters to mini-
mize the total loss function. The training steps are outlined in Algorithm 1.

Algorithm 1 Semi-Supervised Training Procedure 
for GCN-RNN with Attention Mechanism
1: Input: Adjacency matrix A , Node features X , Labels Y , Set of labeled nodes vL,

Number of GCN layers L, Number of time steps T, Hyperparameter λ
2: Output: Trained model parameters
3: Initialize node features H X0� ��
4: for each epoch do
5: GCN Layer:

6: for each GCN layer l L�� �1,...,  do

7: H D AD H Wl l l� � � � � � � �� � �� 1 2 1 2/ /

8: end for
9: Initialize hidden state h0

10: RNN with Attention:

11: for each time step t T�� �1,...,  do
12: Compute attention coefficients eij LeakyReLU aT Whi Whj← ( [ || ])

13: Normalize attention coefficients �ij

ij

k i ik

e

e
�

� �
� �

� � ��
exp

exp


14: Aggregate node features Ht h
j N i

ij j�
� � �
� �
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15: Update hidden state h z h z W x U r ht t t t h t h t t� �� � � � � �� �� �1 1 1  tanh
16: end for
17: Loss Calculation:

18: Compute supervised loss Lsup Y log Y ic
i v c

c

ic

L

� � � �
� �
��

1

ˆ

19: Compute unsupervised loss Lunsup H H
i j

i j� �
� ��
�
, �

2

20: Compute total loss L Lsup Lunsup� � �
21: Backpropagation:
22: Update model parameters to minimize L
23: end for

This training procedure ensures that the model learns effective node representations 
by leveraging both labeled and unlabeled data, improving community detection in 
social networks.

6.4.2.4 � Implementation Details
Implementation of the model is performed by the PyTorch Geometric library, which 
provides efficient tools for handling graph data and performing graph-based compu-
tations. Key implementation details include:

•	 Optimizer: Training is conducted using the Adam optimizer, which is 
known for its ability to handle sparse gradients and adapt the learning rate.

•	 Learning Rate: The initial learning rate is configured at (0.01), with a weight 
decay of 5 × 10−4 to mitigate overfitting.

•	 Hyperparameters: The number of GCN layers L and the number of time steps 
T are determined through cross-validation to ensure optimal performance.

•	 This comprehensive approach ensures that the model is both powerful and 
flexible, capable of handling the complexities of real-world social network 
data for effective community detection.

6.5 � EXPERIMENTAL RESULTS

Here we present the experimental outcomes of using the proposed GCN-RNN with 
an attention mechanism for community detection. Various datasets were used to 
assess the performance and robustness of the method. The results are compared with 
multiple baseline methods to highlight the enhancements achieved by our model.

6.5.1 � Datasets

To ensure a comprehensive evaluation, we used the following datasets:

•	 Zachary’s Karate Club [42]: A classic social network dataset representing 
the relationships among members of a karate club.
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•	 Cora [43]: A citation network dataset where vertices show documents and 
relations represent citations between them.

•	 CiteSeer [44]: Another citation network dataset similar to Cora, used to test 
the scalability and effectiveness of our approach on larger graphs.

•	 Facebook [45]: A real-world social network dataset containing nodes repre-
senting users and edges representing friendships.

6.5.2 �E valuation Metrics

The effectiveness of community detection methods was evaluated using several 
key metrics. Modularity assesses the robustness of the division of a network into 
communities, with higher modularity indicating more clearly defined communities. 
Normalized mutual information (NMI) measures the alignment between discovered 
communities and ground truth, with higher values reflecting better performance. 
Accuracy represents the proportion of correctly classified nodes, offering a straight-
forward performance measure. Finally, the F1 score combines the precision and 
recall measures as the harmonic mean of them and offers a balanced metric that 
considers both false negatives and false positives.

6.5.3 � Baseline Methods

To demonstrate the effectiveness of the proposed GCN-RNN with attention mecha-
nism, its performance was compared against several baseline methods. Modularity 
optimization [22] is a traditional community detection method that optimizes the 
modularity score. Spectral clustering [46] leverages the eigenvalues of the Laplacian 
graph to perform clustering. DeepWalk [28] is a deep learning-based method that 
uses random walks to learn node embeddings. Lastly, GraphSAGE [47] is a recent 
GCN that generates node embeddings utilizing neighborhood information.

6.5.4 �R esults and Discussion

The experimental results are summarized in Tables 6.1, 6.2, 6.3, and 6.4, showcas-
ing the performance of both the proposed method and the baseline methods on the 
specified datasets.

The experimental results show that the proposed GCN-RNN with attention 
mechanism consistently outperforms the baseline methods across all datasets. In 
terms of NMI, our method achieves significantly higher scores, particularly on the 
Karate Club and Facebook datasets, indicating a more accurate detection of com-
munity structures. For modularity, which evaluates the robustness of a network’s 
division into communities, the GCN-RNN-Attention approach also shows superior 
performance, highlighting its ability to identify communities with higher internal 
connectivity and lower external connectivity. Furthermore, the accuracy results 
reinforce the effectiveness of our method, particularly for larger and more complex 
networks such as Facebook, where the accuracy improvement is most pronounced. 
Finally, the F1 scores, which balance precision and recall, further confirm that our 
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TABLE 6.2
Modularity Comparisons of Different Community Detection Methods

Method Karate Club Cora CiteSeer Facebook

Modularity Optimization 0.34 0.42 0.39 0.45

Spectral Clustering 0.32 0.40 0.38 0.44

DeepWalk 0.35 0.43 0.41 0.46

GraphSAGE 0.37 0.44 0.42 0.47

GCN-RNN-Attention 0.38 0.62 0.60 0.50

TABLE 6.3
Accuracy Comparisons of Different Community Detection Methods

Method Karate Club Cora CiteSeer Facebook

Modularity Optimization 0.70 0.65 0.67 0.68

Spectral Clustering 0.68 0.63 0.66 0.67

DeepWalk 0.72 0.68 0.69 0.70

GraphSAGE 0.74 0.69 0.70 0.71

GCN-RNN-Attention 0.87 0.79 0.70 0.85

TABLE 6.1
NMI Scores Comparisons of Different Community Detection Methods

Method Karate Club Cora CiteSeer Facebook

Modularity Optimization 0.34 0.42 0.39 0.45

Spectral Clustering 0.32 0.40 0.38 0.44

DeepWalk 0.35 0.43 0.41 0.46

GraphSAGE 0.37 0.44 0.42 0.47

GCN-RNN-Attention 0.90 0.58 0.42 0.59

TABLE 6.4
F1  Score Comparisons of Different Community Detection Methods

Method Karate Club Cora CiteSeer Facebook

Modularity Optimization 0.70 0.65 0.67 0.68

Spectral Clustering 0.68 0.63 0.66 0.67

DeepWalk 0.72 0.68 0.69 0.70

GraphSAGE 0.74 0.69 0.70 0.71

GCN-RNN-Attention 0.70 0.76 0.65 0.83
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approach offers a more reliable and robust community detection solution compared 
to traditional and other modern methods.

In general, these results prove the potential of the presented framework to enhance 
community detection in diverse social network settings.

The experimental results indicate that the proposed GCN-RNN with attention 
mechanism consistently outperforms the baseline methods across all data sets. The 
superior performance of the GCN-RNN with attention can be attributed to its ability 
to capture both the structural information and the temporal dynamics of the net-
works. The attention mechanism further improves the model by concentrating on the 
most influential nodes and connections.

6.5.4.1 � Semi-Supervised Learning Results
To assess the effectiveness of the semi-supervised learning approach, we performed 
experiments with varying amounts of labeled data. The performance is summarized 
in Tables 6.5, 6.6, 6.7, and 6.8 for the Karate Club, Facebook, Cora and CiteSeer, 
datasets, respectively.

•	 Karate Club Dataset

For the Karate Club dataset, the performance metrics—NMI, ARI, and F1—score 
show a clear trend with varying percentages of labeled data. With only data labeled 

TABLE 6.5
Performance of Semi-Supervised GCN-RNN with Varying Labeled Data on 
Karate Club Dataset

% Labeled Data NMI ARI F1 Score

10% 0.20 0.096 0.32

20% 0.42 0.26 0.39

30% 0.71 0.50 0.85

50% 0.58 0.32 0.64

100% 0.70 0.33 0.60

TABLE 6.6
Performance of Semi-Supervised GCN-RNN with Varying Labeled Data on 
Facebook Dataset

% Labeled Data NMI ARI F1 Score

10% 0.57 0.63 0.83

20% 0.57 0.62 0.82

30% 0.58 0.64 0.83

50% 0.63 0.70 0.86

100% 0.63 0.68 0.86
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TABLE 6.7
Performance of Semi-Supervised GCN-RNN with Varying Labeled Data on 
Cora Dataset

% Labeled Data NMI ARI F1 Score

10% 0.24 0.21 0.39

20% 0.31 0.30 0.52

30% 0.38 0.42 0.54

50% 0.41 0.45 0.61

100% 0.62 0.64 0.76

with 10%, the NMI is 0.20, the ARI is 0.096, and the F1 score is 0.32. As the per-
centage of labeled data increases to 30%, these metrics improve significantly, with 
NMI reaching 0.71, ARI 0.50, and F1 Score 0.85. However, when the labeled data 
increases to 50% and 100%, there is a notable decline in the performance metrics. 
This suggests that for the Karate Club dataset, there might be an optimal percentage 
of labeled data (around 30%) where the model performs best.

•	 Cora Dataset

For the Cora dataset, the performance metrics show a consistent improvement with 
an increase in the labeled data. In the data labeled with 10%, the NMI is 0.24, the 
ARI is 0.21, and the F1 score is 0.39. These values gradually increase, with the high-
est performance observed in the 100% labeled data, where the NMI reaches 0.62, the 
ARI 0.64, and the F1 score 0.76. This indicates that the semi-supervised GCN-RNN 
benefits from more labeled data on the Cora dataset, showing steady improvements 
across all metrics.

•	 CiteSeer Dataset

For the CiteSeer dataset, the performance metrics also improve with increasing 
labeled data, but the trend is less pronounced compared to the Cora dataset. With 

TABLE 6.8
Performance of Semi-Supervised GCN-RNN with Varying Labeled Data on 
CiteSeer Dataset

% Labeled Data NMI ARI F1 Score

10% 0.17 0.12 0.37

20% 0.20 0.17 0.46

30% 0.32 0.31 0.57

50% 0.32 0.32 0.57

100% 0.50 0.50 0.72
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data labeled with 10%, the NMI is 0.17, the ARI is 0.12, and the F1 score is 0.37. 
At 30% labeled data, these metrics increase to 0.32, 0.31, and 0.57, respectively. 
Performance metrics do somewhat plateau with the data labeled with 50%, with 
NMI and ARI both at 0.32 and the F1 Score at 0.57. Full labeled data (100%) yields 
higher scores, with NMI at 0.50, ARI at 0.50, and F1 score at 0.72, indicating that 
the CiteSeer dataset also benefits from more labeled data, though with diminishing 
returns after 50%.

•	 Facebook Dataset

For the Facebook dataset, the performance metrics are relatively high even with low 
percentages of labeled data. In the data labeled with 10%, the NMI is 0.57, the ARI 
is 0.63, and the F1 score is 0.83. These metrics remain stable with slight improve-
ments as the labeled data increases to 30%, and a significant improvement is seen in 
the 50% labeled data where NMI is 0.63, ARI is 0.70 and the F1 score is 0.86. In the 
data labeled with 100%, the NMI and F1 score remain at 0.63 and 0.86, respectively, 
while the ARI is slightly lower at 0.68. This stability suggests that the Facebook 
dataset is robust to the amount of labeled data, maintaining high performance even 
with limited labeled information.

Overall, the experimental results indicate that the performance of the semi-
supervised GCN-RNN varies depending on the dataset and the amount of labeled 
data. For smaller datasets such as Karate Club and CiteSeer, there appears to be an 
optimal range of labeled data that maximizes performance. In contrast, for larger 
and more complex datasets like Cora and Facebook, the model consistently ben-
efits from increased labeled data, showing substantial improvements in community 
detection performance metrics. These findings highlight the importance of adapting 
the amount of labeled data to the specific characteristics and size of the social net-
work dataset to achieve optimal results.

6.5.5 �A blation Study

The ablation analysis shown in Table 6.9 examines the contribution of each compo-
nent to the proposed model (GCN + NRN + Attention) by selectively removing each 
component and evaluating the performance on the Cora dataset. The performance 

TABLE 6.9
Ablation Study Results on CORA Dataset

Model Variant NMI ARI F1 Score

Full Model (GCN+RNN+Attention) 0.70 0.68 0.72

Without Attention 0.62 0.59 0.61

Without RNN 0.64 0.61 0.63

Without GCN 0.60 0.57 0.58
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metrics considered are NMI, ARI, and F1 Score. The complete model, which inte-
grates GCNs, RNNs, and the attention mechanism, achieves the highest performance 
in all metrics, with an NMI of 0.70, an ARI of 0.68, and an F1 score of 0.72. This 
configuration serves as the baseline for comparison, demonstrating the synergistic 
effect of combining these three components.

Removing the attention mechanism results in a notable decline in performance. 
The NMI drops to 0.62, the ARI to 0.59, and the F1 score to 0.61. This indicates 
that the attention mechanism significantly enhances the model’s ability to capture 
important features and relationships within the data, thereby enhancing the accuracy 
of community detection. Excluding the RNN component also leads to a decrease in 
performance, with an NMI of 0.64, ARI of 0.61, and F1 score of 0.63. RNNs are 
particularly effective in capturing temporal and sequential patterns, which are cru-
cial to understanding the dynamic nature of social networks. The reduction in per-
formance metrics highlights the importance of incorporating RNNs to model these 
sequential dependencies. When the GCN component is removed, the performance 
metrics show the most significant decline. The NMI is reduced to 0.60, ARI to 0.57, 
and F1 score to 0.58. GCNs are essential for capturing the structural information of 
the graph, such as connectivity patterns and node features. The marked drop in per-
formance underscores the critical role of GCNs in effectively leveraging the graph 
structure for community detection.

The ablation study clearly demonstrates that each component of the proposed 
model contributes substantially to its overall performance. The GCN component 
has the most significant impact in capturing the graph structure, followed by the 
attention mechanism, which enhances the selection and relevance of the features. 
The RNN component is essential for modeling sequential dependencies within the 
network data. Together, these components form a robust framework that signifi-
cantly improves community detection in social networks. This study underscores the 
importance of a holistic approach, integrating multiple techniques to leverage their 
complementary strengths for optimal performance.

6.6 � SCALABILITY ANALYSIS

The scalability analysis presented in Table 6.10 evaluates the performance and com-
putational effectiveness of the proposed model on the PubMed dataset, which is 
significantly larger than the CORA and CiteSeer datasets. The metrics considered 
are the node count, NMI, and computation time.

The PubMed dataset, with 19,717 nodes, demonstrates the scalability of the pro-
posed model. The NMI score achieved on this dataset is 0.68, indicating a high level 
of accuracy in community detection even with a large number of nodes. However, 
the computation time is 45 minutes, reflecting the increased complexity and resource 
demands when handling larger datasets. The CORA dataset, with 2,708 nodes, 
serves as a benchmark for smaller-scale datasets. The NMI score is 0.70, slightly 
higher than that of the PubMed dataset. The computation time for CORA is signifi-
cantly shorter, at 5 minutes. This indicates that the model performs very efficiently 
on smaller datasets, both in terms of accuracy and computation time. The CiteSeer 
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dataset, containing 3,312 nodes, also showcases the effectiveness of the model on 
mid-sized datasets. The NMI score for CiteSeer is 0.65, which is comparable to 
the other datasets, indicating consistent performance. The computation time is 7 
minutes, reflecting the moderate increase in time required as the number of nodes 
increases.

6.6.1 �S calability and Performance Trade-Off

The analysis reveals a clear trade-off between computation time and the size of 
the dataset. As the node number increases, the computation time rises accordingly. 
Despite this, the model maintains a high level of accuracy (NMI scores) in all data 
sets. This indicates that the proposed GCN-RNN with attention mechanism is scal-
able and capable of handling larger datasets effectively, although it requires more 
computational resources.

The scalability analysis highlights the robustness and efficiency of the proposed 
model across different dataset sizes. For smaller datasets like CORA, the model 
achieves high accuracy with minimal computation time. As the size of the data set 
increases, as seen with PubMed, the model still maintains high accuracy, but at the 
cost of increasing computation time. This shows that the model is suitable for various 
applications, from small- to large-scale social networks, providing reliable commu-
nity detection while balancing computational demands. Future work could explore 
optimization techniques to further reduce the computation time for large datasets 
without compromising accuracy.

6.7 � CONCLUSION

In this chapter, we proposed a new method for community detection in social networks 
by integrating GCNs with RNNs and an attention mechanism, forming the GCN-RNN 
model with attention mechanism. This integrated framework effectively captures both 
spatial and temporal information, providing a comprehensive method to uncover com-
munity structures within complex networks. Our methodology leverages semi-super-
vised learning to point to the challenge of limited labeled data, combining supervised 
and unsupervised loss functions to enhance the learning process. The inclusion of both 
labeled and unlabeled data allows the model to generalize better, leading to improved 
community detection performance. Extensive experimental results on benchmark 

TABLE 6.10
Scalability Analysis on Different Datasets

Dataset Number of Nodes NMI Computation Time

PubMed 19,717 0.68 45 mins

CORA 2,708 0.70 5 mins

CiteSeer 3,312 0.65 7 mins



118 Community Structure Analysis from Social Networks

datasets, including CORA, CiteSeer, and PubMed, demonstrated the superior per-
formance of our proposed model over traditional community detection approaches 
and recent semi-supervised GCNs. The ablation study validated the importance of 
each component in our model, confirming the contributions of GCNs, RNNs, and the 
attention mechanism to overall effectiveness. Scalability analysis further established 
the efficiency of our approach in handling large-scale social networks. The results 
highlight the potential of the GCN-RNN with attention Mechanism model for various 
real-world applications, such as business intelligence, marketing strategies, epidemic 
management, and criminal activity detection. By providing a powerful and scalable 
solution for community detection, our approach opens new viewpoints for research and 
real applications in the field of social network analysis.

New works could investigate the application of this model to dynamic networks 
where the community structures evolve over time, as well as extending the frame-
work to incorporate additional features and data types. In addition, further optimiza-
tion techniques could be investigated to enhance the computational efficiency of the 
model, making it even more applicable to large-scale and real-time network analysis 
scenarios.
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Applications of 
Community Detection 
in Biological Networks

Sadegh Sulaimany and Fatemeh Daneshfar 

7.1 � INTRODUCTION

In the realm of biological research, understanding the intricate web of interactions 
within biological networks is paramount. These networks, which encompass every-
thing from protein–protein interactions to gene regulatory networks, are founda-
tional to comprehending the complex biological processes that sustain life. One of the 
most powerful tools in this endeavor is community detection, a method that allows 
researchers to identify clusters or communities within these networks (Rahiminejad, 
Maurya, and Subramaniam 2019).

Community detection in biological networks involves the identification of groups 
of nodes (such as proteins, genes, or metabolites) that are more densely connected 
to each other than to the rest of the network. These communities often correspond 
to functional modules, such as protein complexes or metabolic pathways, provid-
ing insights into the modular organization of biological systems (Kanter, Yaari, and 
Kalisky 2021).

The significance of community detection extends beyond mere structural analy-
sis. By uncovering these communities, researchers can infer functional relationships, 
predict the behavior of biological systems, and identify potential targets for thera-
peutic intervention. For instance, in protein–protein interaction networks, communi-
ties may represent protein complexes that work together to perform specific cellular 
functions. Similarly, in gene regulatory networks, communities can highlight groups 
of genes that are co-regulated and may participate in the same biological pathways 
(Mohyedinbonab, Jamshidi, and Jin 2014).

This chapter delves into the theory and application of community detection in 
biological networks. First, we will explore various biological networks and their 
theoretical modeling as graphs, and then we will investigate algorithms and meth-
odologies used to detect communities, discuss their strengths and limitations, and 
provide examples of their application in real-world biological research. By the end 
of this chapter, readers will gain a comprehensive understanding of how community 
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Applications of Community Detection in Biological Networks

detection can be leveraged to unravel the complexities of biological networks and 
drive advancements in the field of systems biology.

7.1.1 � Biological Networks

Before into community detection in biological networks, it’s important to provide 
some context about these networks. Therefore, we will first define what biological 
networks are and then discuss their various types. A biological network is a math-
ematical representation of biological systems, typically modeled as a graph G = (V, 
E), where V is a set of vertices (nodes) representing biological entities such as genes, 
proteins, metabolites, or other biomolecules, and E is a set of edges (links) represent-
ing interactions, relationships, or processes between these biological entities.

Formally, E ⊆ {{u, v} : u, v ∈ V, u ≠ v}, where each edge e ∈ E is an unordered 
pair of distinct vertices. This is the fundamental definition of a graph, and depending 
on its variations, different types of graphs can be employed to model various biologi-
cal networks, including directed, weighted, bipartite, and signed graphs (Sulaimany, 
Khansari, and Nejad 2018). Furthermore, various biological networks exhibit distinct 
properties. Here’s a categorization of different biological networks, along with their 
associated graph types for modeling and definitions of edges and nodes (Figure 7.1):

7.1.1.1 � Protein–-Protein Interaction (PPI) Networks
A protein is a large, complex molecule composed of long chains of amino acids that 
determine its unique 3D structure and function. Proteins are essential for various 
biological processes, including enzymatic activity, structural support, transport and 
storage, immune response, and cell signaling. They play critical roles in the body’s 
structure, function, and regulation of tissues and organs (Martz 2012).

A protein–protein interaction (PPI) network is a type of biological network where 
the nodes represent proteins and the edges represent interactions between these pro-
teins. It is often modeled as an undirected graph. The vertices in this graph are con-
nected if there exists an interaction between them. This network structure allows 
researchers to analyze the complex relationships and functional associations among 
proteins, which are crucial for understanding cellular processes and mechanisms 
(Pang, Bai, and Bu 2015). Another variation of the protein networks is the so-called 
protein complex networks. In these types of networks, the edges or interactions can 

FIGURE 7.1  Some of the most popular biological network types.
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be various types such as binding, activation, or inhibition. The strength of the inter-
action can be represented by the weight of the edge. Additionally, this type of graph 
is often undirected, as the interactions are usually mutual (Zahiri et al. 2020).

7.1.1.2 � Gene Regulatory Networks (GRNs)
A gene is a fundamental unit of heredity composed of a specific sequence of DNA 
that encodes the information necessary for the synthesis of functional molecules, 
typically proteins or RNA, which play crucial roles in the development, structure, and 
function of an organism. Genes are the basic units of inheritance, passed from par-
ents to offspring, and their expression is regulated by various mechanisms, ultimately 
contributing to the phenotypic traits observed in living organisms (Hall et al. 2010).

A gene regulatory network (GRN) is a collection of molecular species and their 
interactions, which together control gene product abundance. It can be modeled as 
a directed graph, where nodes represent genes and directed arcs indicate the inter-
actions between them. These networks are crucial for understanding the complex 
processes that regulate gene expression and the intricate relationships between genes 
and their regulatory interactions (Banf and Rhee 2017). A simplified version of gene 
network is called Gene Interaction Networks that is modeled with simple graphs, 
and unlike GRNs, Gene Interaction Networks are often undirected, focusing on the 
presence of an interaction rather than the direction of regulatory control (Gupta and 
Singh 2019).

7.1.1.3 � Metabolic Networks
The term “metabolic” relates to metabolism, which encompasses all the chemical 
processes that occur within a living organism to maintain life. These processes 
include converting food into energy, building and repairing tissues, and eliminat-
ing waste products. Metabolic activities are essential for growth, reproduction, and 
responding to environmental changes (Judge and Dodd 2020).

A Metabolic Network is a computational model that represents the biochemi-
cal reactions within a living organism. It can be viewed as a directed graph where 
nodes represent metabolites and edges represent the biochemical reactions between 
these metabolites. Metabolic networks can be modeled using bipartite or even 
hypergraphs, as the nodes, representing metabolites or enzymes, may be connected 
through various patterns, including bipartite and multipartite structures (Pavlopoulos 
et al. 2011). These networks are crucial for understanding the complex biochemical 
processes within an organism and can provide insights into the organism’s metabolic 
capabilities.

7.1.1.4 � Signal Transduction Networks
Signal transduction is the process by which cells convert external signals into a func-
tional response. We may think of it as a communication network within a cell, where 
a signal (like a chemical or physical stimulus) is received by a receptor, triggering a 
cascade of molecular events. These events often involve proteins and other molecules 
that relay the signal through various pathways, ultimately leading to changes in gene 
expression, enzyme activity, or other cellular functions (Picard and Shirihai 2022).
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A Signal Transduction Network is a complex system that transmits signals from 
the cell’s exterior to its interior, triggering a response. It can simply be modeled as a 
directed graph where nodes represent signaling components (like proteins or genes) 
and edges represent the interactions between these components. These interactions 
can be activation or inhibition, represented by positive or negative signs on the edges. 
However, in more detailed and complicated cases, the signal transduction networks 
may be modeled with hypergraphs or even petri-nets (Koch and Büttner 2023).

7.1.1.5 � Gene Co-Expression Networks
A Gene Co-Expression Network is a computational model that represents the co-
expression relationships between genes. Co-expression analysis in gene networks 
identifies genes with correlated expression levels across different conditions or tis-
sues, revealing functional relationships and aiding in understanding gene regulation, 
cellular processes, and disease mechanisms. Applications include functional anno-
tation of genes, detection of gene modules, disease research by comparing healthy 
and diseased states, biomarker discovery, and reconstructing gene regulatory net-
works to understand gene interactions and regulatory mechanisms. These types of 
networks can be modeled as a weighted graph, where each node corresponds to 
a gene, and a pair of nodes is connected with an edge if there is a significant co-
expression relationship between them. These relationships are typically determined 
by the similarity of gene expression patterns across different conditions or samples 
(Zhao et al. 2010).

7.1.1.6 � Drug–Target Networks
A drug target is a molecule in the body, typically a protein, that a drug interacts with 
to produce a therapeutic effect. These targets can include receptors, enzymes, ion 
channels, and transporters. When a drug binds to its target, it can either activate or 
inhibit the target’s function, leading to changes in cellular processes and ultimately 
affecting the disease or condition being treated. Understanding drug targets is cru-
cial for drug development, as it helps in designing drugs that are both effective and 
specific, minimizing side effects.

A Drug–Target Network is a computational model that represents the interac-
tions between drugs and their target proteins. It can be modeled as a bipartite 
graph, where one set of nodes represents drugs and the other set represents targets. 
Edges in this bipartite graph connect drugs with their corresponding targets. These 
networks are crucial for understanding the complex processes that govern drug–
target interactions and can provide insights into drug discovery and development 
(Shi et al. 2024).

7.1.1.7 � Brain Networks
Brain or Neuronal Networks are a type of biological network that models the struc-
ture and function of the nervous system. These networks can be represented at dif-
ferent scales, from individual neurons to larger brain regions. These networks, also 
known as connectomes, represent the complex system of connections formed by 
various elements of the brain. These networks can be studied at different levels, 
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ranging from microscale (neurons and synapses), through mesoscale (local circuits 
and pathways), to macroscale (long-range connections between brain regions). Brain 
networks are often modeled as graphs, where nodes represent brain elements (e.g., 
neurons or brain regions), and edges represent connections between these elements. 
The type of graph used can vary depending on the level of the network. For instance, 
a microscale network might be represented as a directed graph to capture the direc-
tionality of synaptic connections, while a macroscale network might be represented 
as an undirected graph, with edges representing statistical relationships between the 
activities of different brain regions (C. Luo et al. 2022).

7.1.1.8 � Phylogenetic Networks
Phylogenetic refers to the evolutionary development and diversification of a species 
or group of organisms. It involves studying the ancestral relationships among spe-
cies, individuals, or genes to understand their evolutionary history. This field uses 
various methods to infer these relationships, often resulting in a phylogenetic tree 
that visually represents the evolutionary pathways and connections.

A Phylogenetic Network is a computational model that represents the evolution-
ary relationships between nucleotide sequences, genes, chromosomes, genomes, or 
species. In network science terms, a Phylogenetic Network can be modeled as a 
directed acyclic graph (DAG), where nodes represent taxa and directed edges rep-
resent the evolutionary relationships between these taxa. These networks are cru-
cial for understanding the complex processes that govern evolution, especially when 
reticulate events such as hybridization, horizontal gene transfer, or recombination 
are involved (Hellmuth, Schaller, and Stadler 2023).

7.1.1.9 � Ecological Networks
The term ecological refers to anything related to the interactions between living 
organisms and their environment. This includes how organisms affect each other 
and their surroundings, as well as how they adapt to and modify their habitats. 
An Ecological Network is a computational model that represents the interactions 
between different components of an ecosystem. It can be modeled as a graph, where 
nodes represent species or habitats, and edges represent the interactions between 
these nodes. These interactions can be of various types such as feeding, mutualistic, 
or competitive (Hashemi and Darabi 2022).

7.1.1.10 � Disease–Gene Networks
A Disease–Gene Network (DGN) is a computational model that represents the asso-
ciations between diseases and genes. It may be modeled as a bipartite graph, where 
one set of nodes represents diseases and the other set represents genes. Edges in this 
bipartite graph connect diseases with their corresponding genes. These networks 
are crucial for understanding the complex processes that govern disease–gene inter-
actions and can provide insights into disease diagnosis, prevention, and treatment 
strategies. When it comes to disease-specific gene networks, such as cancer-related 
networks, these models can provide valuable insights into the genetic basis of spe-
cific types of cancer (Ata et al. 2021).
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7.1.1.11 � RNA-Related Networks
RNA, or ribonucleic acid, is a crucial molecule in biology that plays several roles in 
coding, decoding, regulating, and expressing genes. Unlike DNA, which is double-
stranded, RNA is typically single-stranded and consists of a sequence of nucleotides. 
RNA comes in several forms, each with distinct functions essential for gene expres-
sion and protein synthesis. Messenger RNA (mRNA) carries genetic instructions 
from DNA to ribosomes, where proteins are synthesized. Transfer RNA (tRNA) 
translates the genetic code in mRNA into the amino acid sequence of proteins by 
matching specific amino acids to corresponding codons. Ribosomal RNA (rRNA) 
forms the structural and functional core of ribosomes, facilitating the assembly of 
amino acids into proteins. Additionally, there are other types like small nuclear RNA 
(snRNA) involved in RNA splicing and microRNA (miRNA) which regulates gene 
expression by interfering with mRNA translation (Sato and Hamada 2023).

RNA-related networks can be modeled using various graph types to represent dif-
ferent aspects of RNA interactions and functions. RNA–RNA interaction networks 
use undirected weighted graphs, with nodes representing RNA molecules and edges 
indicating physical interactions. mRNA–miRNA regulatory networks are modeled 
as directed bipartite graphs, capturing the regulatory relationships between these 
RNA types. tRNA gene connectivity networks use undirected graphs to represent 
genomic co-localization or functional similarity of tRNA genes. Competing endoge-
nous RNA networks involving circRNAs, miRNAs, and mRNAs are represented by 
mixed directed and undirected tripartite graphs. RNA–protein interaction networks 
use bipartite graphs to model physical interactions between RNAs and proteins. 
RNA structure networks are undirected graphs where nodes represent nucleotides or 
structural elements, and edges represent base pairs or structural interactions. RNA 
splicing networks can be modeled as directed hypergraphs, with nodes representing 
exons and introns, and hyperedges representing splicing events. These diverse net-
work models allow researchers to apply graph theory, network analysis, and machine 
learning techniques to study complex RNA-related biological processes, from regu-
latory interactions to structural dynamics (Lei et al. 2021; Y. Zhou and Chen 2024).

7.1.1.12 � Transcription Factor Binding Networks
Transcription factor binding is the process by which special proteins called tran-
scription factors attach to specific parts of DNA. By sticking to certain parts of 
DNA, transcription factors can turn genes “on” or “off,” helping to control what the 
cells do. This is similar to flipping switches that determine how different parts of 
the body function, allowing for growth, healing, and responses to the environment. 
Without transcription factors, cells wouldn't know which instructions to follow, 
making them essential for maintaining health and proper function. Transcription 
factor binding networks (TFBNs) are intricate maps of interactions between tran-
scription factors and their target genes. These networks reveal how genes are regu-
lated. Scientists use various data sources, including ChIP-Seq (to identify binding 
sites), motif analysis, and gene expression data, to construct these networks. TFBNs 
find applications in understanding disease mechanisms, drug discovery, and even 
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evolutionary studies. The type of graph typically used for modeling Transcription 
Factor Binding Networks is a bipartite-directed graph. Sometimes, these graphs may 
be weighted to indicate the strength or likelihood of binding interactions. They may 
also incorporate additional features like color-coding or node sizes to represent dif-
ferent properties of transcription factors or genes (Su et al. 2022).

7.1.1.13 � Cellular Compartment Networks
A cellular compartment refers to distinct sections within a cell, often surrounded by 
a membrane, that create specialized environments for specific biological processes. 
These compartments, such as the nucleus, mitochondria, and endoplasmic reticu-
lum, allow the cell to efficiently carry out various functions by isolating different 
activities and maintaining unique conditions within each compartment. Also, cel-
lular compartment networks (CCNs) model the spatial organization and interactions 
between different compartments within a cell. These networks represent how vari-
ous organelles, membranes, and substructures in a cell communicate and exchange 
materials. From a computational view, CCNs can be conceptualized as a system of 
interconnected nodes (compartments) with edges representing the flow of molecules, 
signals, or other cellular components between them.

The graph type commonly used for modeling CCNs is an undirected weighted 
graph. Nodes represent distinct cellular compartments (e.g., nucleus, mitochondria, 
endoplasmic reticulum), while edges represent the interactions or communications 
between these compartments. Edge weights can indicate the strength, frequency, or 
importance of these interactions. This graph structure allows for the application of 
various graph algorithms and network analysis techniques to study cellular organi-
zation, predict protein localization, analyze the impact of cellular compartmental-
ization on biological processes, and simulate the dynamics of intracellular transport. 
CCNs are particularly useful in systems biology, drug discovery, and understanding 
cellular responses to different stimuli or perturbations (Aittokallio and Schwikowski 
2006).

7.1.1.14 � Pathway–Pathway Interaction Networks
A pathway refers to a series of interactions among molecules within a cell that leads 
to a specific product or a change in the cell. These pathways can trigger the assembly 
of new molecules, such as proteins or fats, turn genes on or off, or prompt a cell to 
move. Common types of biological pathways include metabolic pathways, which 
involve chemical reactions in the body, gene-regulation pathways, which control gene 
expression, and signal transduction pathways, which transmit signals from a cell’s 
exterior to its interior. Pathway–pathway interaction networks (PPINs) are intricate 
maps of how biological pathways within cells interact. These networks reveal how 
different pathways—such as metabolic, signaling, or regulatory pathways—collabo-
rate and influence each other. PPINs are modeled as undirected weighted graphs, 
where nodes represent pathways (e.g., Wnt signaling, cell cycle), and edges denote 
interactions. These interactions can be physical, regulatory, or functional. PPINs find 
applications in cancer classification, drug repurposing, functional annotation, and 
personalized medicine (D. Chen et al. 2016).
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These were the most popular biological networks, but the list can be extensive 
depending on the various combinations of biological entities related to the specific 
research problem. For example, these or some other biological networks that may 
be more investigated: Microbiome Interaction Networks, Allosteric Regulation 
Networks, Chromatin Interaction Networks, Host–Pathogen Interaction Networks, 
Epigenetic Regulatory Networks, Tissue-Specific Gene Networks, even multi-layer 
networks with more than two nodes such as gene–disease–drug network, etc. Indeed, 
this demonstrates that the level of abstraction for biological networks can range from 
the micro to the macro level.

Finally, categorization of biological networks covers a wide range, each repre-
senting different aspects of biological systems. The choice of graph type for mod-
eling depends on the nature of the biological entities and their interactions. Some 
networks may have variations or combinations of these basic types, especially when 
incorporating multi-omics data or temporal information.

7.2 � COMMUNITY DETECTION APPLICATIONS

In this subsection, we will briefly review the fundamental applications of community 
detection related categorized by different types of biological networks, to provide 
novel insights for future research. These insights address areas that have not been 
routinely considered in community detection for various biological network types. 
Community detection plays a crucial role in biological network analysis across seven 
major categories: functional module identification, function prediction, target iden-
tification, mechanism understanding and analysis, evolutionary studies, complex or 
cluster prediction, and biomarker discovery. It is important to note that these appli-
cations of community detection are proposed based on the knowledge and experi-
ence of the authors. At the end of the subsection, the details of Table 7.1 will be 
thoroughly explained.

7.2.1 �F unctional Module Identification

We will provide a brief explanation of functional module identification for each of 
the mentioned biological networks below based on reviewing the related literature. 
Depending on the network type, community detection helps identify modules of 
biological entities that work together in a common function, as shown in Figure 7.2.

7.2.1.1 � Protein Networks
Functional module identification in protein networks involves discovering groups of 
proteins that work together to perform specific cellular functions. This process helps 
reveal protein complexes and functional pathways within the cell. By analyzing the 
interconnections and interactions between proteins, researchers can identify clusters 
or communities that represent biologically meaningful units (Omranian, Angeleska, 
and Nikoloski 2021). These modules might correspond to molecular machines, 
behavior cascades, or metabolic pathways. Identifying such functional modules aids 
in understanding the organization of cellular processes, predicting protein functions, 
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and uncovering the roles of previously uncharacterized proteins based on their asso-
ciations within the network.

7.2.1.2 � Gene Regulatory Networks (GRNs)
In Gene Regulatory Networks, functional module identification focuses on uncover-
ing sets of genes that are regulated by common transcription factors or that work 
together in specific regulatory processes. This approach helps researchers identify 
regulatory modules involved in particular cellular responses or developmental pro-
cesses (Segal et al. 2003). By analyzing the patterns of gene regulation and co-reg-
ulation, it becomes possible to discern groups of genes that are functionally related 
or that respond similarly to certain stimuli. These modules can provide insights into 
how gene expression is coordinated across different cellular conditions and how 
complex biological processes are controlled at the transcriptional level.

7.2.1.3 � Metabolic Networks
Functional module identification in metabolic networks aims to discover sets of 
enzymes and metabolites that are involved in specific biochemical pathways or met-
abolic functions. This process helps reveal how cellular metabolism is organized 
into distinct functional units. By analyzing the connections between metabolites and 

FIGURE 7.2  General overview of functional module identification as the result of commu-
nity detection in biological networks.
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the enzymes that catalyze their transformations, researchers can identify modules 
that represent coherent metabolic pathways or sets of reactions that work together to 
produce certain compounds. This modular view of metabolism aids in understand-
ing how cells efficiently manage their resources, adapt to different environmental 
conditions, and maintain homeostasis (Koch and Ackermann 2013).

7.2.1.4 � Signal Transduction Networks
In signal transduction networks, functional module identification involves uncov-
ering signaling cascades and pathways that transmit specific cellular signals. This 
process helps identify groups of proteins that work together to relay information 
from the cell surface to the nucleus or other cellular compartments. By analyzing the 
interactions and dependencies between signaling molecules, researchers can discern 
modules that represent distinct signaling pathways or cross-talking signaling sys-
tems. This modular understanding of signal transduction helps elucidate how cells 
respond to external stimuli, integrate multiple signals, and make decisions about cell 
fate, growth, and other critical processes (Jiang et al. 2011).

7.2.1.5 � Gene Co-Expression Networks
Functional module identification in gene co-expression networks involves discover-
ing groups of genes that show similar expression patterns across various conditions 
or samples. This approach helps reveal functional modules of genes that are likely 
involved in the same biological processes or pathways. By analyzing correlations in 
gene expression data, researchers can identify clusters of genes that are consistently 
co-expressed, suggesting they may be co-regulated or functionally related (Liang et 
al. 2019). These modules can provide insights into gene function, help in the annota-
tion of uncharacterized genes, and reveal higher-level organization of cellular pro-
cesses based on coordinated gene expression patterns.

7.2.1.6 � Drug–Target Networks
In drug–target networks, functional module identification focuses on discovering 
groups of drugs that target similar sets of proteins, or conversely, modules of pro-
teins targeted by specific classes of drugs. This process helps in understanding the 
mechanism of action of drugs and their potential off-target effects. By analyzing 
the connections between drugs and their protein targets, researchers can identify 
modules that represent drug classes with similar mechanisms or protein families 
that are particularly susceptible to drug interactions. This modular view can aid in 
drug repurposing efforts, help predict drug side effects, and provide insights into the 
design of more targeted therapeutics (Hase et al. 2014).

7.2.1.7 � Brain Networks
Functional module identification in brain networks involves discovering groups 
of brain regions or neural circuits that work together to perform specific cognitive 
functions. This process helps reveal the modular organization of the brain, where 
different areas collaborate to process information and generate behavior. By analyz-
ing connectivity patterns or co-activation of brain regions, researchers can identify 
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functional modules that correspond to sensory processing, motor control, language, 
memory, or other cognitive domains. This modular understanding of brain function 
aids in deciphering how complex cognitive processes emerge from the coordinated 
activity of distributed neural networks (Faskowitz, Betzel, and Sporns 2022).

7.2.1.8 � Phylogenetic Networks
In phylogenetic networks, functional module identification typically involves dis-
covering groups of species or genes with similar evolutionary histories (Erten et 
al. 2009). This process helps reveal modules of taxa or genetic elements that have 
undergone similar evolutionary processes. By analyzing the patterns of genetic 
or trait similarities across species, researchers can identify clusters that represent 
monophyletic groups, convergent evolution events, or horizontally transferred gene 
clusters. While traditional functional modules are less common in phylogenetic con-
texts, this approach can help understand evolutionary relationships, detect instances 
of hybridization or reticulate evolution, and uncover patterns of trait evolution across 
lineages.

7.2.1.9 � Ecological Networks
Functional module identification in ecological networks involves discovering groups 
of species with strong ecological interactions or similar roles within an ecosystem. 
This process helps reveal modules representing food webs, mutualistic relationships, 
or groups of species that respond similarly to environmental factors. By analyzing 
the interactions between species (such as predator-prey relationships or pollination 
networks), researchers can identify clusters that represent functional units within the 
ecosystem. These modules can provide insights into ecosystem structure, stability, 
and resilience, and help in predicting how ecosystems might respond to perturba-
tions or changes in species composition (J. Zhou et al. 2010).

7.2.1.10 � Disease–Gene Networks
In disease–gene networks, functional module identification focuses on discovering 
groups of genes associated with specific diseases or disease categories. This pro-
cess helps reveal modules of genes involved in similar pathological processes or 
contributing to related disease phenotypes (Tripathi et al. 2019). By analyzing the 
connections between diseases and their associated genes, researchers can identify 
clusters that represent common genetic bases for certain disorders or shared path-
ways in disease progression. This modular view of disease–gene relationships aids 
in understanding disease mechanisms, identifying potential therapeutic targets, and 
uncovering previously unknown connections between different medical conditions.

7.2.1.11 � RNA-Related Networks
Functional module identification in RNA-related networks involves discovering 
groups of RNAs with similar functions, regulatory relationships, or interaction 
partners. This process helps reveal modules of RNA-RNA or RNA–protein inter-
actions that are important for various cellular processes. By analyzing the connec-
tions between different RNA species or between RNAs and their binding proteins, 
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researchers can identify clusters that represent functional units in RNA regulation, 
processing, or cellular localization (Klimm et al. 2020). These modules can provide 
insights into the complex roles of RNAs in gene expression regulation, cellular struc-
ture, and signal transduction.

7.2.1.12 � Transcription Factor Binding Networks
In transcription factor binding networks, functional module identification involves 
discovering groups of genes regulated by similar sets of transcription factors or mod-
ules of transcription factors that tend to work together (Karczewski et al. 2014). This 
process helps reveal regulatory modules involved in specific cellular responses or 
developmental processes. By analyzing the binding patterns of transcription factors 
to gene promoters or enhancers, researchers can identify clusters that represent co-
regulated gene sets or combinatorial transcription factor complexes. These modules 
provide insights into the organization of transcriptional regulation and help in under-
standing how complex gene expression patterns are achieved.

7.2.1.13 � Cellular Compartment Networks
Functional module identification in cellular compartment networks focuses on dis-
covering groups of proteins or processes localized to specific cellular compartments 
or involved in inter-compartment communication (Itzhak et al. 2016). This process 
helps reveal functional modules within organelles or cellular structures, as well as 
pathways for material or information exchange between compartments. By analyz-
ing the localization patterns of proteins and their interactions across different cel-
lular spaces, researchers can identify clusters that represent functional units within 
specific compartments or processes that span multiple compartments. This modular 
view aids in understanding the spatial organization of cellular functions and how 
compartmentalization contributes to cellular efficiency and regulation.

7.2.1.14 � Pathway–Pathway Interaction Networks
In pathway–pathway interaction networks, functional module identification involves 
discovering groups of pathways that interact or influence each other. This process 
helps reveal higher-order functional modules composed of multiple interconnected 
pathways. By analyzing the connections and dependencies between different bio-
logical pathways, researchers can identify clusters that represent super-pathways 
or functional units that integrate multiple cellular processes (Hsu and Yang 2012). 
These modules provide insights into how different aspects of cellular function are 
coordinated and how perturbations in one pathway might affect seemingly unrelated 
processes. This higher-level modular view aids in understanding the complex inter-
play between different cellular systems and how cells achieve robust and adaptable 
functioning.

7.2.2 �F unction Prediction

Here we try to provide a brief explanation of the function prediction concept for each 
of the mentioned biological networks below based on reviewing the related literature.
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7.2.2.1 � Protein Networks
Function prediction in protein networks leverages the principle of “guilt by associa-
tion,” where proteins with unknown functions can be inferred based on their inter-
actions with well-characterized proteins. By analyzing the network topology and 
the functional annotations of neighboring proteins, researchers can predict potential 
roles for uncharacterized proteins (Gligorijević et al. 2021). This approach is particu-
larly powerful in identifying proteins involved in specific cellular processes, com-
plexes, or pathways. Machine learning algorithms can be applied to these networks 
to improve prediction accuracy, considering factors such as network centrality, clus-
tering coefficients, and interaction strengths.

7.2.2.2 � Gene Regulatory Networks (GRNs)
In GRNs, function prediction focuses on inferring the regulatory roles of genes and 
their potential target genes. By analyzing the network structure and the known func-
tions of well-characterized transcription factors and their targets, researchers can 
predict the regulatory functions of uncharacterized genes (Zhang and Moret 2010). 
This approach can help identify potential master regulators of specific biological 
processes, genes involved in particular cellular responses, or genes crucial for devel-
opmental stages. Additionally, by examining the regulatory patterns and motifs in 
the network, it’s possible to predict which genes might be involved in similar regula-
tory processes or respond to similar stimuli.

7.2.2.3 � Metabolic Networks
Function prediction in metabolic networks aims to infer the biochemical roles of 
uncharacterized enzymes or metabolites. By analyzing the position of an unknown 
entity within the metabolic network, researchers can predict its potential function 
based on its connections to known metabolic pathways. This approach can help 
identify missing enzymes in metabolic pathways, predict the substrates or prod-
ucts of uncharacterized enzymes, and infer the potential roles of novel metabolites. 
Network-based approaches can also predict which enzymes might be involved in 
newly discovered metabolic pathways or adaptations to specific environmental con-
ditions (Schläpfer et al. 2017).

7.2.2.4 � Signal Transduction Networks
In signal transduction networks, function prediction involves inferring the roles of 
proteins in signal relay and processing. By analyzing the position of an uncharacter-
ized protein within signaling cascades, researchers can predict its potential function 
in signal transduction (Li, Assmann, and Albert 2006). This approach can help iden-
tify potential kinases, phosphatases, scaffolding proteins, or transcription factors 
involved in specific signaling pathways. It can also predict which proteins might be 
crucial for integrating signals from multiple pathways or for determining the speci-
ficity of cellular responses to different stimuli.

7.2.2.5 � Gene Co-Expression Networks
Function prediction in gene co-expression networks relies on the principle that genes 
with similar expression patterns are likely to have related functions. By analyzing 
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clusters of co-expressed genes and the known functions of some genes within these 
clusters, researchers can infer potential functions for uncharacterized genes. This 
approach is particularly useful for predicting involvement in specific biological pro-
cesses, cellular components, or molecular functions. It can also help in identifying 
genes that might be part of the same pathway or regulated by the same transcription 
factors, thereby providing insights into their potential roles in cellular processes (F. 
Luo et al. 2007).

7.2.2.6 � Drug–Target Networks
In drug–target networks, function prediction focuses on inferring the potential thera-
peutic applications or mechanisms of action for drugs or drug candidates. By analyz-
ing the network of known drug–target interactions, researchers can predict potential 
targets for drugs with unknown mechanisms or potential off-target effects of known 
drugs (Wu et al. 2018). This approach can also be used to predict which drugs might 
be effective for treating specific diseases based on their target profiles. Additionally, 
by examining the functional similarities of targets of known drugs, researchers can 
infer potential functions of uncharacterized proteins that are targeted by similar 
drugs.

7.2.2.7 � Brain Networks
Function prediction in brain networks involves inferring the cognitive or behav-
ioral roles of specific brain regions or neural circuits. By analyzing the connectivity 
patterns and activation profiles of different brain areas, researchers can predict the 
potential functions of less-studied regions (Neudorf, Kress, and Borowsky 2022). 
This approach can help identify brain areas that might be involved in specific cog-
nitive tasks, emotional processes, or sensory–motor functions. It can also predict 
which brain regions might be crucial for integrating information from different sen-
sory modalities or for coordinating complex behaviors.

7.2.2.8 � Phylogenetic Networks
In phylogenetic networks, function prediction typically involves inferring the poten-
tial functions of genes or traits in one species based on knowledge from related spe-
cies. By analyzing the evolutionary relationships and functional annotations across 
different species, researchers can predict the likely functions of uncharacterized 
genes in a particular organism (Wen et al. 2018). This approach is particularly useful 
for transferring functional knowledge from well-studied model organisms to less-
studied species. It can also help in predicting how certain traits or functions might 
have evolved or been conserved across different lineages.

7.2.2.9 � Ecological Networks
Function prediction in ecological networks focuses on inferring the ecological roles 
or niches of species within an ecosystem. By analyzing the interactions between 
species (such as predator–prey relationships or mutualistic interactions), research-
ers can predict the potential functions of less-studied species in the ecosystem. 
This approach can help identify keystone species, predict the effects of species loss 
on ecosystem functioning, or infer the potential roles of invasive species in new 
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environments. It can also be used to predict how changes in one species might affect 
others in the network, providing insights into ecosystem dynamics and stability (J. 
Zhou et al. 2010).

7.2.2.10 � Disease–Gene Networks
In disease–gene networks, function prediction aims to infer the potential roles of 
genes in disease processes or their contributions to specific phenotypes. By analyz-
ing the connections between known disease-associated genes and their functional 
annotations, researchers can predict which other genes might be involved in similar 
pathological processes. This approach can help identify potential drug targets, pre-
dict genes that might contribute to disease risk or progression, and infer the molecu-
lar mechanisms underlying complex diseases. It can also be used to predict potential 
comorbidities or shared genetic bases between different diseases (Ata et al. 2021).

7.2.2.11 � RNA-Related Networks
Function prediction in RNA-related networks involves inferring the potential 
roles of uncharacterized RNAs or RNA-binding proteins. By analyzing the inter-
actions between RNAs and proteins, as well as the known functions of well-
characterized RNAs, researchers can predict potential regulatory, structural, or 
catalytic functions of novel RNA species. This approach can help identify RNAs 
involved in gene regulation, splicing, or cellular structure maintenance. It can 
also predict which RNA-binding proteins might be involved in specific RNA 
processing events or post-transcriptional regulatory mechanisms (Seifuddin and 
Pirooznia 2021).

7.2.2.12 � Transcription Factor Binding Networks
In transcription factor binding networks, function prediction focuses on inferring 
the regulatory roles of transcription factors and their target genes. By analyzing the 
binding patterns of transcription factors and the functions of known target genes, 
researchers can predict the potential regulatory impacts of less-studied transcrip-
tion factors (C. Chen et al. 2021). This approach can help identify transcription fac-
tors that might be master regulators of specific biological processes, predict which 
genes might be involved in particular cellular responses, or infer the regulatory pro-
grams controlling cell fate decisions. It can also be used to predict how perturbations 
in transcription factor activity might affect gene expression patterns and cellular 
phenotypes.

7.2.2.13 � Cellular Compartment Networks
Function prediction in cellular compartment networks aims to infer the potential 
localization and roles of proteins within specific cellular structures or organelles. 
By analyzing the known localizations of proteins and their interaction partners, 
researchers can predict where uncharacterized proteins might function within the 
cell (Watson et al. 2022). This approach can help identify proteins involved in spe-
cific organelle functions, predict which proteins might be crucial for inter-compart-
ment communication, or infer the potential roles of proteins in maintaining cellular 
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organization. It can also be used to predict how mislocalization of proteins might 
contribute to cellular dysfunction or disease states.

7.2.2.14 � Pathway–Pathway Interaction Networks
In pathway–pathway interaction networks, function prediction involves inferring the 
potential roles of pathways in higher-order cellular processes or their contributions 
to complex phenotypes (Pita-Juárez et al. 2018). By analyzing the interactions and 
dependencies between different pathways, researchers can predict how perturbations 
in one pathway might affect others, or how multiple pathways might work together 
to achieve specific cellular outcomes. This approach can help identify key integra-
tor pathways, predict potential cross-talk mechanisms between seemingly unrelated 
processes, or infer how cells might coordinate different aspects of their physiology. 
It can also be used to predict the potential systemic effects of targeting specific path-
ways in therapeutic interventions.

7.2.3 �T arget Identification

We will provide a brief explanation of target identification for each of the mentioned 
biological networks below based on reviewing the related literature. Determining the 
essentiality or importance of a node in a biological network can be achieved by first 
partitioning the network into communities and then identifying the most important 
node in each community. Figure 7.3 illustrates a conceptual view of community 
detection followed by the identification of key targets based on their degree of cen-
trality or total number of connections.

FIGURE 7.3  Identifying important targets through community detection in a network, 
nodes with greater size play more important role in this example.
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7.2.3.1 � Protein Networks
Target identification in protein networks involves identifying proteins that play cru-
cial roles in specific biological processes or diseases. By analyzing network topology, 
researchers can identify highly connected hub proteins or proteins that bridge different 
functional modules. These proteins often serve as potential drug targets due to their 
central roles in cellular processes. Furthermore, by examining the network neighbor-
hood of known disease-associated proteins, researchers can identify additional proteins 
that may be involved in the disease mechanism and thus serve as novel therapeutic tar-
gets. This approach can also help in identifying proteins that, when targeted, might have 
widespread effects on the network, potentially leading to more effective interventions.

7.2.3.2 � Gene Regulatory Networks (GRNs)
In GRNs, target identification focuses on identifying key regulatory genes or transcrip-
tion factors that control important cellular processes or disease states. By analyzing 
the network structure, researchers can identify master regulators that control large sets 
of genes or transcription factors that are crucial for specific cellular responses. These 
regulators often serve as potential drug targets, as modulating their activity can have 
broad effects on gene expression patterns. Additionally, by examining the regulatory 
relationships in disease-associated GRNs, researchers can identify aberrant regulatory 
interactions that could be targeted to restore normal gene expression patterns.

7.2.3.3 � Metabolic Networks
Target identification in metabolic networks aims to find enzymes or metabolites that 
are critical for specific metabolic pathways or cellular functions. By analyzing the 
network structure, researchers can identify bottleneck reactions or enzymes that 
control flux through important pathways. These enzymes often serve as good drug 
targets, as their inhibition can effectively disrupt pathways crucial for pathogen sur-
vival or cancer cell proliferation. Furthermore, by examining alterations in metabolic 
networks associated with diseases, researchers can identify metabolic vulnerabilities 
that could be exploited for therapeutic interventions. This approach is particularly 
useful in identifying targets for metabolic diseases, cancer, and infectious diseases.

7.2.3.4 � Signal Transduction Networks
In signal transduction networks, target identification involves finding key proteins 
in signaling cascades that, when modulated, can effectively alter cellular responses. 
By analyzing the network structure, researchers can identify critical nodes that inte-
grate multiple signals or amplify specific responses. These proteins, often kinases or 
receptors, serve as excellent drug targets due to their pivotal roles in signal propaga-
tion. Additionally, by examining how signal transduction networks are altered in 
disease states, researchers can identify aberrant signaling events that could be tar-
geted to restore normal cellular function. This approach is particularly valuable in 
developing targeted therapies for cancer and autoimmune diseases.

7.2.3.5 � Gene Co-Expression Networks
Target identification in gene co-expression networks focuses on finding genes that 
are central to co-expression modules associated with specific cellular states or 
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diseases. By analyzing the network structure, researchers can identify hub genes that 
are highly connected within disease-associated modules. These genes often serve 
as potential drug targets, as modulating their expression might have broad effects 
on the entire module. Furthermore, by comparing co-expression networks between 
healthy and disease states, researchers can identify genes whose co-expression pat-
terns are significantly altered, potentially revealing novel therapeutic targets.

7.2.3.6 � Drug–Target Networks
In drug–target networks, target identification involves finding proteins that, when tar-
geted, could have therapeutic effects with minimal side effects. By analyzing the network 
of known drug–target interactions, researchers can identify proteins that are targeted by 
multiple successful drugs, suggesting their importance as therapeutic targets. Conversely, 
they can also identify proteins that are not targeted by any known drugs, potentially 
revealing novel therapeutic opportunities. Additionally, by examining the network neigh-
borhood of targets of successful drugs, researchers can identify related proteins that 
might serve as targets for developing new drugs with similar therapeutic effects.

7.2.3.7 � Brain Networks
Target identification in brain networks focuses on identifying brain regions or neural 
circuits that play crucial roles in specific cognitive functions or neurological dis-
orders. By analyzing network connectivity patterns, researchers can identify hub 
regions that integrate information from multiple sources or regions that show altered 
connectivity in disease states. These regions or circuits can serve as targets for 
interventions such as deep brain stimulation or transcranial magnetic stimulation. 
Additionally, by examining how brain networks are disrupted in neurological or psy-
chiatric disorders, researchers can identify specific connections or regions that could 
be targeted to restore normal brain function.

7.2.3.8 � Phylogenetic Networks
In phylogenetic networks, target identification typically involves identifying genes or 
traits that are conserved across species and play crucial roles in fundamental biologi-
cal processes. By analyzing the evolutionary relationships and functional annota-
tions across different species, researchers can identify highly conserved genes that 
are likely to be essential for survival. These genes often serve as good drug targets, 
especially for developing broad-spectrum antimicrobials. Additionally, by examin-
ing how certain traits or functions have evolved across species, researchers can iden-
tify genes that have undergone positive selection in specific lineages, potentially 
revealing targets for species-specific interventions.

7.2.3.9 � Ecological Networks
Target identification in ecological networks involves identifying species or interac-
tions that are crucial for maintaining ecosystem stability or function. By analyzing 
network structure, researchers can identify keystone species that have disproportion-
ate effects on ecosystem dynamics. These species could be targets for conservation 
efforts or for managing ecosystem services. Additionally, by examining how ecolog-
ical networks respond to perturbations, researchers can identify critical interactions 
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or species that could be targeted to enhance ecosystem resilience or to control inva-
sive species.

7.2.3.10 � Disease–Gene Networks
In disease–gene networks, target identification focuses on finding genes that play 
central roles in disease processes. By analyzing the network of disease–gene asso-
ciations, researchers can identify genes that are linked to multiple related diseases, 
suggesting their importance in common pathological processes. These genes often 
serve as promising drug targets. Additionally, by examining the network neighbor-
hood of known disease genes, researchers can identify other genes that might be 
involved in the disease mechanism, potentially revealing novel therapeutic targets. 
This approach is particularly useful for complex diseases where multiple genes con-
tribute to the disease phenotype.

7.2.3.11 � RNA-Related Networks
Target identification in RNA-related networks involves finding key RNAs or RNA-
binding proteins that play crucial roles in gene regulation or disease processes. By 
analyzing interaction networks between RNAs and proteins, researchers can identify 
hub RNAs or proteins that are involved in multiple regulatory processes. These mol-
ecules can serve as potential therapeutic targets, especially in diseases associated 
with dysregulation of RNA processing or function. Additionally, by examining how 
RNA-related networks are altered in disease states, researchers can identify specific 
RNA–protein interactions that could be targeted to restore normal cellular function.

7.2.3.12 � Transcription Factor Binding Networks
In transcription factor binding networks, target identification focuses on finding key 
transcription factors that regulate important sets of genes involved in specific cel-
lular processes or diseases. By analyzing the network of transcription factor–gene 
interactions, researchers can identify master regulators that control large gene sets 
or transcription factors that are crucial for specific cellular responses. These tran-
scription factors often serve as potential drug targets, as modulating their activity 
can have broad effects on gene expression patterns. Additionally, by examining how 
transcription factor binding patterns are altered in disease states, researchers can 
identify aberrant regulatory interactions that could be targeted to restore normal 
gene expression.

7.2.3.13 � Cellular Compartment Networks
Target identification in cellular compartment networks involves finding proteins or 
processes that are crucial for maintaining cellular organization or for inter-compart-
ment communication. By analyzing the network of protein localizations and interac-
tions across different cellular compartments, researchers can identify proteins that 
play key roles in multiple compartments or in trafficking between compartments. 
These proteins can serve as potential drug targets, especially for diseases associated 
with protein mislocalization or organelle dysfunction. Additionally, by examining 
how cellular compartment networks are altered in disease states, researchers can 
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identify specific inter-compartment interactions or processes that could be targeted 
to restore normal cellular function.

7.2.3.14 � Pathway–Pathway Interaction Networks
In pathway–pathway interaction networks, target identification focuses on finding 
key pathways or pathway interactions that are crucial for complex cellular processes 
or disease states. By analyzing the network of interactions between different biologi-
cal pathways, researchers can identify central pathways that integrate information 
from multiple cellular processes. These pathways, or the proteins mediating their 
interactions, can serve as potential therapeutic targets. Additionally, by examin-
ing how pathway interactions are altered in disease states, researchers can identify 
specific cross-talk mechanisms or pathway dependencies that could be targeted to 
disrupt disease progression. This approach is particularly valuable for developing 
combination therapies or for identifying targets that might have broad effects on 
cellular function.

7.3 � MECHANISM UNDERSTANDING AND ANALYSIS

We will provide a brief explanation of mechanism understanding and analysis for 
each of the mentioned biological networks below based on reviewing the related 
literature.

7.3.1 �P rotein Networks

Mechanism understanding and analysis in protein networks involves deciphering 
how proteins interact and work together to carry out cellular functions. By studying 
the topology and dynamics of these networks, researchers can identify protein com-
plexes, signaling cascades, and functional modules. This approach helps elucidate 
how perturbations in one part of the network can propagate and affect other areas, 
providing insights into disease mechanisms and drug effects. Advanced techniques 
like time-resolved proteomics and network perturbation analysis allow researchers 
to understand how protein interactions change over time or in response to stimuli, 
revealing the dynamic nature of cellular processes and adaptation mechanisms.

7.3.2 �G ene Regulatory Networks (GRNs)

In GRNs, mechanism understanding focuses on how genes regulate each other’s 
expression to control cellular processes. Analysis of these networks reveals regula-
tory motifs, feedback loops, and hierarchical structures that govern gene expres-
sion patterns. By studying how transcription factors and other regulatory elements 
interact, researchers can understand mechanisms of cell differentiation, response 
to environmental stimuli, and disease progression. Techniques like ChIP-seq and 
single-cell RNA sequencing provide high-resolution data to construct and validate 
these networks, allowing for a deeper understanding of how genetic regulation 
orchestrates complex biological phenomena.
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7.3.3 �M etabolic Networks

Mechanism understanding in metabolic networks involves analyzing the flow of 
matter and energy through biochemical pathways. By studying these networks, 
researchers can identify key enzymes, metabolic bottlenecks, and regulatory points 
that control cellular metabolism. Flux balance analysis and metabolic control analy-
sis are powerful tools used to predict how changes in enzyme activity or metabolite 
concentrations affect overall metabolic output. This understanding is crucial for elu-
cidating mechanisms of metabolic diseases, designing metabolic engineering strate-
gies, and identifying potential drug targets in pathogens or cancer cells.

7.3.4 �S ignal Transduction Networks

Analysis of signal transduction networks focuses on understanding how cells per-
ceive and respond to external stimuli. By mapping out signaling cascades and study-
ing their dynamics, researchers can elucidate mechanisms of signal amplification, 
integration, and attenuation. This understanding is crucial for comprehending how 
cells make decisions in complex environments. Techniques like phosphoproteomics 
and live-cell imaging allow for real-time tracking of signaling events, revealing the 
spatiotemporal dynamics of these processes. Such analyses are vital for understand-
ing the mechanisms of diseases like cancer, where signaling pathways are often 
dysregulated.

7.3.5 �G ene Co-Expression Networks

Mechanism understanding in gene co-expression networks involves identifying 
groups of genes that are expressed together under various conditions. By analyzing 
these co-expression patterns, researchers can infer functional relationships between 
genes and understand coordinated gene regulation mechanisms. This approach is 
particularly useful for identifying genes involved in specific biological processes 
or diseases, even when their individual functions are unknown. Integration of co-
expression data with other types of networks can provide a more comprehensive 
understanding of cellular mechanisms and gene function.

7.3.6 � Drug–Target Networks

Analysis of drug–target networks aims to understand the mechanisms of drug action 
and side effects. By studying how drugs interact with multiple targets and how these 
interactions propagate through biological networks, researchers can elucidate both 
therapeutic and adverse effects of drugs. This network-based approach helps in 
understanding poly pharmacology, where a drug’s effects are mediated through mul-
tiple targets. It also aids in predicting drug repurposing opportunities and potential 
drug–drug interactions, thereby improving our understanding of complex pharma-
cological mechanisms.
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7.3.7 � Brain Networks

Mechanism understanding in brain networks focuses on how different brain regions 
communicate and coordinate to produce cognitive functions and behaviors. By ana-
lyzing structural and functional connectivity patterns, researchers can elucidate 
mechanisms of information processing, memory formation, and decision-making. 
Advanced neuroimaging techniques combined with network analysis reveal how 
brain networks reconfigure dynamically in response to tasks or in disease states. 
This understanding is crucial for deciphering the mechanisms of neurological and 
psychiatric disorders and for developing targeted interventions.

7.3.8 �P hylogenetic Networks

In phylogenetic networks, mechanism understanding involves analyzing evolu-
tionary relationships and processes. By studying these networks, researchers can 
elucidate mechanisms of speciation, gene transfer, and adaptation. Analysis of phy-
logenetic networks helps in understanding how traits evolve, how species interact 
and diverge, and how genetic material is exchanged between different lineages. 
This understanding is crucial for fields like evolutionary biology, ecology, and 
epidemiology, providing insights into mechanisms of biodiversity generation and 
pathogen evolution.

7.3.9 �E cological Networks

Mechanism understanding in ecological networks involves analyzing interactions 
between species and their environment. By studying food webs, mutualistic net-
works, and other ecological interactions, researchers can elucidate mechanisms of 
ecosystem stability, species coexistence, and community assembly. Network analy-
sis reveals how perturbations in one part of the ecosystem can propagate, affecting 
other species and ecosystem functions. This understanding is crucial for predicting 
ecosystem responses to environmental changes, managing conservation efforts, and 
understanding mechanisms of species invasion and extinction.

7.3.10 � Disease–Gene Networks

Analysis of disease–gene networks aims to understand the genetic mechanisms 
underlying complex diseases. By studying how disease-associated genes interact 
and form functional modules, researchers can elucidate pathways and processes 
involved in disease pathogenesis. This network-based approach helps in under-
standing how multiple genetic factors contribute to disease risk and progression, 
moving beyond single-gene perspectives. Integration of disease–gene networks 
with other biological networks provides a systems-level understanding of disease 
mechanisms, aiding in the development of targeted therapies and personalized 
medicine approaches.
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7.3.11 �RNA -Related Networks

Mechanism understanding in RNA-related networks focuses on how different 
RNA species interact with each other and with proteins to regulate gene expres-
sion and cellular function. Analysis of these networks reveals mechanisms of post-
transcriptional regulation, including RNA splicing, stability, and localization. By 
studying RNA-protein interactions and RNA–RNA interactions, researchers can 
elucidate complex regulatory mechanisms like those involving microRNAs and 
long non-coding RNAs. This understanding is crucial for comprehending gene 
regulation mechanisms in development, disease, and cellular response to environ-
mental cues.

7.3.12 �T ranscription Factor Binding Networks

Analysis of transcription factor binding networks aims to understand how gene 
expression is regulated at the transcriptional level. By studying how different tran-
scription factors interact with DNA and with each other, researchers can elucidate 
mechanisms of combinatorial gene regulation and enhancer function. Network 
analysis reveals regulatory motifs, feedback loops, and hierarchical structures that 
govern complex expression patterns. This understanding is crucial for deciphering 
mechanisms of cell fate determination, disease progression, and cellular response to 
various stimuli.

7.3.13 �C ellular Compartment Networks

Mechanism understanding in cellular compartment networks involves analyzing 
how different organelles and cellular structures interact and communicate. By study-
ing the flow of molecules and information between compartments, researchers can 
elucidate mechanisms of cellular organization and function. This network-based 
approach helps in understanding how cells maintain homeostasis, respond to stress, 
and carry out complex processes like protein trafficking and signal transduction. 
Analysis of these networks is crucial for understanding the mechanisms of diseases 
associated with organelle dysfunction and for developing targeted therapies.

7.3.14 �P athway–Pathway Interaction Networks

Analysis of pathway–pathway interaction networks aims to understand how different 
biological pathways influence and regulate each other. By studying these higher-
order interactions, researchers can elucidate mechanisms of cellular decision-mak-
ing, homeostasis, and adaptation to complex environments. This network-based 
approach reveals how perturbations in one pathway can have far-reaching effects on 
seemingly unrelated cellular processes. Understanding these interactions is crucial 
for predicting systemic effects of drugs, elucidating complex disease mechanisms, 
and developing more effective therapeutic strategies that target multiple pathways 
simultaneously.
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7.4 � EVOLUTIONARY STUDIES

We will provide a brief explanation of evolutionary studies for each of the men-
tioned biological networks below based on reviewing the related literature. A visual 
example of the evolution of communities within a sample biological network over 
time can be seen in Figure 7.4.

7.4.1 �P rotein Networks

Evolutionary studies of protein networks focus on how protein–protein interactions 
have evolved over time. Researchers compare protein interaction networks across 
different species to identify conserved modules, which often represent fundamental 
cellular processes. These studies reveal how new interactions emerge, how existing 
ones are lost or modified, and how the overall network topology changes through 
evolution. By examining the rate of evolution of different network components, 
researchers can identify proteins and interactions that are under strong evolution-
ary pressure, indicating their functional importance (Yamada and Bork 2009). Such 
studies also help in understanding how organisms adapt to different environments by 
rewiring their protein interaction networks.

7.4.2 �G ene Regulatory Networks (GRNs)

Evolutionary studies of GRNs investigate how regulatory relationships between 
genes change over evolutionary time. By comparing GRNs across species, research-
ers can identify conserved regulatory modules and species-specific innovations. 
These studies reveal how changes in regulatory interactions contribute to phenotypic 

FIGURE 7.4  Biological network evolution in view of community detection.
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diversity and adaptation. Researchers examine the evolution of transcription factor 
binding sites, the emergence of new regulatory connections, and the rewiring of 
existing networks. Such analyses provide insights into the mechanisms of evolution-
ary innovation, the origins of complex traits, and the plasticity of gene regulation in 
response to environmental changes.

7.4.3 �M etabolic Networks

Evolutionary studies of metabolic networks examine how organisms’ biochemical 
capabilities have evolved over time. Researchers compare metabolic networks across 
different species to understand the evolution of metabolic pathways and the acqui-
sition of new metabolic capabilities. These studies reveal how organisms adapt to 
different nutritional environments and how metabolic diversity arises. By analyzing 
the presence or absence of enzymes and metabolites across species, researchers can 
reconstruct ancestral metabolic networks and trace the evolution of specific path-
ways. Such studies are crucial for understanding the metabolic basis of adaptation 
and for metabolic engineering applications.

7.4.4 �S ignal Transduction Networks

Evolutionary studies of signal transduction networks focus on how cellular signaling 
pathways have evolved. By comparing these networks across species, researchers can 
identify conserved signaling modules and species-specific adaptations. These stud-
ies reveal how organisms have evolved to respond to different environmental stimuli 
and how complex multicellular signaling arose from simpler systems. Researchers 
examine the evolution of receptor proteins, kinases, and other signaling components, 
as well as the rewiring of signaling cascades. Such analyses provide insights into the 
origins of cellular communication systems and how they contribute to organismal 
complexity and adaptability.

7.4.5 �G ene Co-Expression Networks

Evolutionary studies of gene co-expression networks investigate how patterns of 
coordinated gene expression have changed over evolutionary time. By compar-
ing co-expression networks across species, researchers can identify conserved co-
expression modules, which often represent fundamental biological processes. These 
studies reveal how gene regulation evolves at a systems level, beyond individual 
regulatory interactions. Researchers examine how co-expression patterns change in 
response to different evolutionary pressures and how they contribute to phenotypic 
diversity. Such analyses provide insights into the evolution of gene function and the 
emergence of tissue-specific gene expression patterns.

7.4.6 � Drug–Target Networks

Evolutionary studies of drug–target networks focus on how the interactions between 
drugs and their protein targets have evolved. While not directly subject to natural 
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selection, these networks reflect the evolution of the underlying protein networks. 
Researchers examine how the drug ability of proteins has changed over evolutionary 
time and how this relates to their functional importance. These studies can reveal 
why certain proteins are common drug targets across many species while others 
are species-specific. Such analyses are crucial for understanding the evolutionary 
basis of drug efficacy and for predicting potential drug targets in newly emerging 
pathogens.

7.4.7 � Brain Networks

Evolutionary studies of brain networks examine how neural connectivity patterns 
have evolved across different species. By comparing brain networks in different 
organisms, from simple invertebrates to complex mammals, researchers can trace 
the evolution of cognitive functions and behaviors. These studies reveal how brain 
regions and their connections have been conserved or modified through evolution, 
providing insights into the origins of complex cognitive abilities. Researchers exam-
ine changes in network topology, the emergence of new brain regions, and the rewir-
ing of existing circuits. Such analyses are crucial for understanding the evolutionary 
basis of cognition and for interpreting human brain function in an evolutionary 
context.

7.4.8 �P hylogenetic Networks

Evolutionary studies of phylogenetic networks are intrinsically focused on under-
standing evolutionary relationships and processes. These networks represent the 
complex evolutionary histories of species or genes, including events like horizontal 
gene transfer, hybridization, and incomplete lineage sorting. By analyzing these net-
works, researchers can reconstruct evolutionary histories, estimate divergence times, 
and understand processes of speciation and adaptation. These studies are crucial for 
understanding biodiversity, tracking the spread of pathogens, and reconstructing the 
tree of life. They also provide insights into how evolutionary processes shape genetic 
and phenotypic diversity.

7.4.9 �E cological Networks

Evolutionary studies of ecological networks examine how species interactions have 
evolved over time. By comparing ecological networks across different ecosystems 
and time periods, researchers can understand how community structures and spe-
cies interactions change through evolution. These studies reveal how co-evolution 
shapes species interactions, how new ecological roles emerge, and how ecosystems 
respond to environmental changes over evolutionary time scales. Researchers exam-
ine changes in network topology, the evolution of mutualistic and antagonistic rela-
tionships, and the stability of ecological communities. Such analyses are crucial for 
understanding the evolutionary basis of ecosystem function and for predicting how 
ecosystems might respond to future environmental changes.
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7.4.10 � Disease–Gene Networks

Evolutionary studies of disease–gene networks focus on how genetic susceptibility 
to diseases has evolved over time. By comparing disease–gene associations across 
species, researchers can identify conserved disease mechanisms and species-specific 
vulnerabilities. These studies reveal how genetic risk factors have changed through 
evolution and how they relate to past selective pressures. Researchers examine the 
evolution of disease-associated genes, the emergence of new disease susceptibilities, 
and the maintenance of genetic variants that increase disease risk. Such analyses 
provide insights into the evolutionary origins of diseases and can help in identifying 
potential therapeutic targets.

7.4.11 �RNA -Related Networks

Evolutionary studies of RNA-related networks investigate how RNA–RNA and 
RNA–protein interactions have evolved. By comparing these networks across spe-
cies, researchers can trace the evolution of RNA-based regulatory mechanisms. 
These studies reveal how non-coding RNAs have emerged as regulatory elements 
and how RNA–protein interactions have been conserved or modified through evolu-
tion. Researchers examine the evolution of RNA structures, the emergence of new 
RNA classes, and the rewiring of RNA-based regulatory networks. Such analyses 
are crucial for understanding the evolutionary significance of RNA in cellular func-
tion and regulation.

7.4.12 �T ranscription Factor Binding Networks

Evolutionary studies of transcription factor binding networks focus on how gene 
regulatory interactions have evolved at the DNA level. By comparing binding pat-
terns across species, researchers can identify conserved regulatory elements and 
species-specific innovations. These studies reveal how changes in transcription fac-
tor binding contribute to phenotypic diversity and adaptation. Researchers examine 
the evolution of binding motifs, the turnover of binding sites, and the rewiring of 
regulatory networks. Such analyses provide insights into the mechanisms of regula-
tory evolution and how changes in gene regulation contribute to organismal com-
plexity and diversity.

7.4.13 �C ellular Compartment Networks

Evolutionary studies of cellular compartment networks examine how the organiza-
tion of cellular space has evolved over time. By comparing these networks across 
species, from prokaryotes to complex eukaryotes, researchers can trace the evolu-
tion of cellular complexity. These studies reveal how new organelles have emerged, 
how protein targeting mechanisms have evolved, and how inter-compartment 
communication has been established and modified. Researchers examine changes 
in compartment structure, the evolution of transport proteins, and the rewiring of 
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inter-compartment interactions. Such analyses are crucial for understanding the evo-
lutionary basis of cellular organization and function.

7.4.14 �P athway–Pathway Interaction Networks

Evolutionary studies of pathway–pathway interaction networks focus on how the 
relationships between different biological pathways have evolved. By comparing 
these higher-order networks across species, researchers can understand how cellu-
lar processes have become integrated over evolutionary time. These studies reveal 
how new pathway interactions emerge, how existing ones are modified or lost, and 
how the overall cellular system becomes more complex or streamlined. Researchers 
examine the evolution of pathway crosstalk, the emergence of new regulatory con-
nections between pathways, and the conservation of core pathway interactions. Such 
analyses provide insights into the evolution of cellular complexity and how organ-
isms adapt to diverse environments by modifying the interactions between different 
cellular processes.

7.5 � COMPLEX/CLUSTER PREDICTION

We will provide a brief explanation of complex/cluster prediction for each of the 
mentioned biological networks below based on reviewing the related literature. 
Complexes can be imagined as communities identified after detection, each com-
posed of several tightly associated biological entities. Figure 7.5 illustrates this con-
cept from a general perspective.

7.5.1 �P rotein Networks

Complex/cluster prediction in protein networks involves identifying groups of pro-
teins that work together to perform specific cellular functions. This process uses var-
ious algorithms to detect densely interconnected regions within the network, which 
often correspond to protein complexes or functional modules. Methods like Markov 
Clustering, MCODE, or Cluster ONE are commonly employed. These predictions 
help in understanding cellular organization, discovering new protein complexes, and 
inferring functions of uncharacterized proteins based on their cluster membership. 
Such analyses are crucial for elucidating mechanisms of cellular processes and iden-
tifying potential drug targets in disease-related protein clusters.

7.5.2 �G ene Regulatory Networks (GRNs)

In GRNs, complex/cluster prediction focuses on identifying sets of genes that are 
co-regulated or form regulatory modules. This involves detecting groups of genes 
controlled by similar sets of transcription factors or groups of transcription factors 
that tend to work together. Methods like hierarchical clustering, k-means cluster-
ing, or more advanced techniques like biclustering are often used. These predictions 
help in understanding coordinated gene regulation, identifying master regulators of 
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cellular processes, and uncovering regulatory programs involved in development or 
disease. Such analyses are vital for deciphering the complex logic of gene regulation 
and predicting cellular responses to various stimuli.

7.5.3 �M etabolic Networks

Complex/cluster prediction in metabolic networks aims to identify groups of metab-
olites and enzymes that form functional metabolic modules or pathways. This often 
involves detecting sets of reactions that operate together to perform specific bio-
chemical functions. Techniques like elementary flux mode analysis, extreme pathway 
analysis, or community detection algorithms are commonly used. These predictions 
help in understanding the modular organization of metabolism, identifying bottle-
necks in metabolic pathways, and predicting potential sites for metabolic engineer-
ing. Such analyses are crucial for understanding cellular metabolism and developing 
strategies for metabolic disease treatment or biotechnological applications.

7.5.4 �S ignal Transduction Networks

In signal transduction networks, complex/cluster prediction focuses on identifying 
signaling modules or cascades that work together to transmit specific cellular sig-
nals. This involves detecting groups of signaling proteins that are frequently acti-
vated together or form coherent signaling pathways. Methods like network motif 
detection, module detection algorithms, or dynamic network analysis are often 

FIGURE 7.5  Complex detection/prediction as a widely used application of community 
detection in biological networks. It identifies the compact regions of the network, such as 
protein complexes.
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employed. These predictions help in understanding how cells integrate multiple 
signals, identifying critical nodes in signaling pathways, and predicting cellular 
responses to various stimuli. Such analyses are vital for understanding cell decision-
making processes and identifying potential targets for therapeutic interventions in 
diseases like cancer.

7.5.5 �G ene Co-Expression Networks

Complex/cluster prediction in gene co-expression networks involves identifying 
groups of genes that show similar expression patterns across various conditions. 
This often uses techniques like hierarchical clustering, k-means clustering, or more 
advanced methods like weighted gene co-expression network analysis (WGCNA). 
These predictions help in identifying functionally related genes, uncovering gene 
modules associated with specific biological processes or diseases, and inferring 
functions of uncharacterized genes. Such analyses are crucial for understanding the 
functional organization of the genome and identifying potential biomarkers or thera-
peutic targets.

7.5.6 � Drug–Target Networks

In drug–target networks, complex/cluster prediction aims to identify groups of drugs 
that target similar sets of proteins or groups of proteins targeted by similar sets 
of drugs. This often involves techniques like biclustering, community detection, 
or network-based clustering algorithms. These predictions help in understanding 
drug mechanisms of action, identifying potential off-target effects, and discover-
ing opportunities for drug repurposing. Such analyses are vital for drug discovery 
and development, helping to predict drug efficacy and side effects based on network 
properties.

7.5.7 � Brain Networks

Complex/cluster prediction in brain networks focuses on identifying functional mod-
ules or circuits within the brain. This involves detecting groups of brain regions that 
show coordinated activity or structural connectivity. Methods like modularity maxi-
mization, spectral clustering, or dynamic functional connectivity analysis are com-
monly used. These predictions help in understanding brain organization, identifying 
functional circuits involved in specific cognitive processes, and detecting alterations 
in brain network structure in neurological disorders. Such analyses are crucial for 
advancing our understanding of brain function and developing targeted interventions 
for brain disorders.

7.5.8 �P hylogenetic Networks

In phylogenetic networks, complex/cluster prediction often involves identifying 
groups of species or genes with similar evolutionary histories. This can include 
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detecting clusters of closely related species, identifying groups of genes that have 
undergone similar evolutionary processes, or uncovering reticulate events like 
hybridization or horizontal gene transfer. Methods like network community detec-
tion, phylogenetic tree-based clustering, or reticulate network analysis are com-
monly used. These predictions help in understanding evolutionary relationships, 
identifying instances of convergent evolution, and uncovering patterns of gene flow 
between species. Such analyses are crucial for reconstructing evolutionary histories 
and understanding the processes that shape biodiversity.

7.5.9 �E cological Networks

Complex/cluster prediction in ecological networks aims to identify groups of species 
that interact closely or form functional units within ecosystems. This can involve 
detecting food web modules, mutualistic clusters, or groups of species with similar 
ecological roles. Methods like modularity analysis, nested ness detection, or motif 
analysis are often employed. These predictions help in understanding ecosystem 
structure, identifying keystone species or functional groups, and predicting ecosys-
tem responses to perturbations. Such analyses are vital for ecosystem management, 
conservation planning, and predicting the impacts of environmental changes on eco-
logical communities.

7.5.10 � Disease–Gene Networks

In disease–gene networks, complex/cluster prediction focuses on identifying 
groups of genes associated with specific diseases or disease categories. This often 
involves detecting densely interconnected subnetworks of disease-associated 
genes or identifying clusters of diseases with similar genetic bases. Methods like 
network module detection, disease module detection algorithms, or biclustering 
approaches are commonly used. These predictions help in understanding disease 
mechanisms, identifying potential drug targets, and uncovering shared genetic 
bases between seemingly unrelated diseases. Such analyses are crucial for advanc-
ing our understanding of complex diseases and developing targeted therapeutic 
strategies (Ata et al. 2021).

7.5.11 �RNA -Related Networks

Complex/cluster prediction in RNA-related networks involves identifying groups of 
RNAs or RNA-binding proteins that work together in specific cellular processes. 
This can include detecting clusters of co-regulated RNAs, identifying groups of 
RNAs that interact with similar sets of proteins, or uncovering functional modules 
in RNA processing pathways. Methods like clustering algorithms, network motif 
detection, or RNA structure-based clustering are often employed. These predictions 
help in understanding RNA-based regulation, identifying functional RNA classes, 
and predicting RNA–protein interactions. Such analyses are vital for elucidating the 
complex roles of RNAs in cellular function and gene regulation.
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7.5.12 �T ranscription Factor Binding Networks

In transcription factor binding networks, complex/cluster prediction aims to iden-
tify groups of transcription factors that tend to bind to similar genomic regions or 
groups of genes regulated by similar sets of transcription factors. This often involves 
techniques like motif-based clustering, co-binding analysis, or regulatory module 
detection algorithms. These predictions help in understanding combinatorial gene 
regulation, identifying enhancer regions, and predicting transcriptional responses to 
various stimuli. Such analyses are crucial for deciphering the complex logic of gene 
regulation and predicting gene expression patterns in different cellular contexts.

7.5.13 �C ellular Compartment Networks

Complex/cluster prediction in cellular compartment networks focuses on identifying 
groups of proteins or processes that are localized to specific cellular compartments 
or involved in inter-compartment communication. This can involve detecting clus-
ters of proteins that co-localize in certain organelles or identifying functional mod-
ules that span multiple compartments. Methods like spatial clustering algorithms, 
compartment-specific network analysis, or protein localization prediction tools are 
often used. These predictions help in understanding cellular organization, predict-
ing protein localization, and identifying processes involved in organelle function 
or inter-compartment trafficking. Such analyses are vital for elucidating the spatial 
organization of cellular processes and understanding how cells coordinate activities 
across different compartments.

7.5.14 �P athway–Pathway Interaction Networks

In pathway–pathway interaction networks, complex/cluster prediction aims to iden-
tify groups of pathways that frequently interact or influence each other. This often 
involves detecting densely interconnected regions in the network of pathway inter-
actions or identifying sets of pathways that consistently show coordinated activity. 
Methods like hierarchical clustering, network community detection, or pathway 
crosstalk analysis are commonly employed. These predictions help in understanding 
higher-order cellular organization, identifying super-pathways or functional modules 
that span multiple canonical pathways, and predicting systemic responses to pertur-
bations. Such analyses are crucial for developing a systems-level understanding of 
cellular function and predicting complex cellular behaviors that emerge from the 
interactions between multiple pathways.

7.6 � BIOMARKER DISCOVERY

We will provide a brief explanation of biomarker discovery for each of the mentioned 
biological networks below based on reviewing the related literature. In this case, the 
biomarkers are specific nodes within each detected community that play a crucial 
role in their group, serving purposes such as cancer markers, Figure 7.6.
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7.6.1 �P rotein Networks

Biomarker discovery in protein networks involves identifying proteins or protein 
complexes that can serve as indicators of specific biological states or diseases. This 
process often focuses on hub proteins, which have many interactions, or proteins 
that bridge different functional modules. Network analysis can reveal proteins whose 
expression or interaction patterns change significantly in disease states (Al-Fatlawi 
et al. 2023). Techniques like differential network analysis and network centrality 
measures are used to identify potential biomarkers. These protein biomarkers can 
be used for early disease detection, prognosis prediction, or monitoring treatment 
response. The network context provides additional robustness to these biomarkers, 
as it considers the protein’s role within the larger cellular system.

7.6.2 �G ene Regulatory Networks (GRNs)

In GRNs, biomarker discovery focuses on identifying key regulatory genes or regula-
tory interactions that are indicative of specific cellular states or diseases. This might 
involve detecting master regulators whose activity changes significantly in disease 
states, or identifying regulatory network motifs that are disrupted. Techniques like 
network inference and differential network analysis are often employed. These regu-
latory biomarkers can provide insights into the underlying mechanisms of diseases 
and may serve as potential therapeutic targets. They are particularly valuable for 
understanding complex diseases where the dysregulation of gene expression plays a 
crucial role.

7.6.3 �M etabolic Networks

Biomarker discovery in metabolic networks involves identifying metabolites or 
enzymatic reactions that indicate specific metabolic states or diseases. This often 
focuses on detecting changes in metabolic flux distributions or identifying metabo-
lites whose levels are significantly altered in disease states. Techniques like flux 
balance analysis and metabolic control analysis are commonly used. These meta-
bolic biomarkers can be particularly useful for diseases with strong metabolic com-
ponents, such as diabetes or cancer. They can provide early indicators of disease 

FIGURE 7.6  Sample biomarker discovery process based on community detection.
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progression and offer insights into the metabolic reprogramming that occurs in vari-
ous pathological conditions.

7.6.4 �S ignal Transduction Networks

In signal transduction networks, biomarker discovery aims to identify signaling 
molecules or pathway activities that indicate specific cellular responses or disease 
states. This might involve detecting changes in phosphorylation patterns, identifying 
pathway activation signatures, or uncovering critical nodes in signaling cascades 
that are dysregulated in diseases. Techniques like pathway activity inference and 
phosphoproteomics are often used. These signaling biomarkers can provide real-
time indicators of cellular responses to stimuli or therapeutic interventions. They are 
particularly valuable in cancer research, where aberrant signaling is a hallmark of 
the disease.

7.6.5 �G ene Co-expression Networks

Biomarker discovery in gene co-expression networks focuses on identifying groups 
of genes whose coordinated expression patterns are indicative of specific biological 
states or diseases. This often involves detecting changes in network modules or iden-
tifying hub genes whose co-expression patterns are significantly altered in disease 
states. Techniques like weighted gene co-expression network analysis (WGCNA) are 
commonly used. These co-expression biomarkers can provide robust indicators of 
complex cellular states, as they capture the coordinated behavior of multiple genes. 
They are particularly useful for diseases with complex genetic bases, where single-
gene biomarkers may be insufficient.

7.6.6 � Drug–Target Networks

In drug–target networks, biomarker discovery aims to identify drug–target interac-
tions or network perturbations that can serve as indicators of drug efficacy or toxicity. 
This might involve detecting changes in network topology following drug treat-
ment or identifying subnetworks that are consistently affected by effective drugs. 
Techniques like network pharmacology and drug-induced gene expression profil-
ing are often used. These pharmacological biomarkers can help in predicting drug 
responses, identifying potential side effects, and understanding the mechanisms of 
drug action. They are particularly valuable in personalized medicine approaches, 
where predicting individual responses to drugs is crucial.

7.6.7 � Brain Networks

Biomarker discovery in brain networks focuses on identifying patterns of brain 
connectivity or activity that indicate specific cognitive states or neurological dis-
orders. This might involve detecting changes in functional connectivity, identify-
ing altered network modules, or uncovering disruptions in brain network topology. 
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Techniques like graph theoretical analysis of neuroimaging data and machine learn-
ing approaches are commonly used. These neurological biomarkers can provide 
early indicators of brain disorders, help in monitoring disease progression, and offer 
insights into the neural bases of various cognitive processes. They are particularly 
valuable in the study of complex neurological and psychiatric disorders.

7.6.8 �P hylogenetic Networks

While not typically used for traditional biomarker discovery, phylogenetic networks 
can contribute to identifying genetic markers of evolutionary lineages or species-
specific traits. This might involve detecting conserved genetic elements across 
species or identifying genetic variations unique to specific lineages. These evolu-
tionary biomarkers can be useful in fields like conservation biology, where identify-
ing unique genetic markers of endangered species is important, or in epidemiology, 
where tracing the evolution of pathogens is crucial.

7.6.9 �E cological Networks

In ecological networks, biomarker discovery often focuses on identifying indica-
tor species or network properties that reflect ecosystem health or environmental 
changes. This might involve detecting changes in network structure, identifying key-
stone species, or uncovering shifts in interaction patterns (Holt and Miller 2011). 
These ecological biomarkers can provide early warnings of ecosystem disturbances, 
help in monitoring biodiversity, and offer insights into the impacts of environmental 
changes. They are particularly valuable in conservation biology and environmental 
management.

7.6.10 � Disease–Gene Networks

Biomarker discovery in disease–gene networks aims to identify genes or gene mod-
ules that are strongly associated with specific diseases or disease progression. This 
often involves detecting network modules enriched for disease-associated genes or 
identifying genes that bridge multiple disease modules. Techniques like network-
based gene prioritization and disease module detection are commonly used. These 
genetic biomarkers can provide insights into disease mechanisms, help in early dis-
ease detection, and guide personalized treatment strategies. They are particularly 
valuable in complex diseases with strong genetic components.

7.6.11 �RNA -Related Networks

In RNA-related networks, biomarker discovery focuses on identifying RNA spe-
cies or RNA–protein interactions that indicate specific cellular states or diseases. 
This might involve detecting changes in RNA expression patterns, identifying altera-
tions in RNA splicing networks, or uncovering dysregulated RNA–protein interac-
tions. Techniques like RNA sequencing and CLIP-seq are often used. These RNA 
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biomarkers can provide sensitive indicators of cellular states and are particularly 
valuable in diseases where post-transcriptional regulation plays a crucial role, such 
as many neurological disorders and cancers (Farrel et al. 2023).

7.6.12 �T ranscription Factor Binding Networks

Biomarker discovery in transcription factor binding networks aims to identify 
specific binding patterns or regulatory interactions that are indicative of cellular 
states or diseases. This might involve detecting changes in transcription factor 
occupancy, identifying altered enhancer activities, or uncovering the rewiring 
of regulatory networks. Techniques like ChIP-seq and ATAC-seq are commonly 
used (Dirks, Stunnenberg, and Marks 2016). These regulatory biomarkers can 
provide insights into the mechanisms of gene regulation in different biologi-
cal contexts and are particularly valuable in developmental biology and cancer 
research.

7.6.13 �C ellular Compartment Networks

In cellular compartment networks, biomarker discovery focuses on identifying 
changes in protein localization or inter-compartment communication that indicate 
specific cellular states or diseases. This might involve detecting alterations in pro-
tein trafficking patterns, identifying changes in organelle morphology, or uncovering 
disruptions in inter-compartment signaling. Techniques like high-content imaging 
and spatial proteomics are often used. These subcellular biomarkers can provide 
detailed insights into cellular organization and are particularly valuable in diseases 
associated with protein mislocalization or organelle dysfunction, such as neurode-
generative disorders.

7.6.14 �P athway–Pathway Interaction Networks

Biomarker discovery in pathway–pathway interaction networks aims to identify 
higher-order network properties or pathway crosstalk patterns that indicate specific 
biological states or diseases. This might involve detecting changes in pathway coor-
dination, identifying alterations in pathway crosstalk, or uncovering the rewiring of 
pathway interactions (Haider et al. 2018). Techniques like pathway enrichment anal-
ysis and network-based pathway analysis are commonly used. These systems-level 
biomarkers can provide holistic views of cellular states and are particularly valuable 
in complex diseases where the dysregulation of multiple pathways contributes to the 
pathology.

7.7 � CONCLUSION

In conclusion, community detection in biological networks is a vital approach to 
unravel the complexities of biological systems. The identification of functional 
modules within these networks not only enhances our understanding of biological 
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interactions but also has practical implications for therapeutic interventions and dis-
ease research. Future work in this field may focus on the following:

	 1.	Algorithm Development: There is a need for the development of more 
efficient and scalable algorithms that can handle the increasing complex-
ity and size of biological networks. Future research could explore hybrid 
approaches that combine existing algorithms or integrate machine learning 
techniques to improve accuracy and computational efficiency.

	 2.	 Integration of Multi-Omics Data: Future studies could aim to integrate 
multi-omics data (genomics, proteomics, metabolomics) into community 
detection frameworks. This integration would provide a more comprehen-
sive view of biological systems and facilitate the identification of functional 
modules across different biological layers.

	 3.	Dynamic Network Analysis: Biological networks are not static; they change 
over time due to various factors such as cellular processes and environ-
mental influences. Future works could focus on developing methods for 
dynamic community detection that can track changes in network structure 
and function over time.

	 4.	Application to Disease Mechanisms: There is significant potential for applying 
community detection techniques to understand disease mechanisms better. 
Future research could focus on specific diseases, using community detection 
to identify key biological pathways and potential therapeutic targets.

	 5.	Validation and Benchmarking: Establishing standardized benchmarks and 
validation methods for community detection algorithms in biological con-
texts is crucial. Future works could focus on creating datasets and metrics 
that allow for the comparison of different algorithms and their effectiveness 
in real-world biological scenarios.

	 6.	Visualization Tools: Developing advanced visualization tools to represent 
detected communities within biological networks could enhance interpret-
ability and facilitate collaboration among biologists and computational 
scientists.

	 7.	 Interdisciplinary Collaboration: Encouraging interdisciplinary collabora-
tions among computer scientists, biologists, and medical researchers could 
lead to innovative applications of community detection in understanding 
complex biological systems and improving healthcare outcomes.

By addressing these areas, future research can significantly advance the field of com-
munity detection in biological networks, ultimately contributing to a deeper under-
standing of biological processes and improved therapeutic strategies.
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Influential Node 
Detection Based on 
Implicit Communities

Neda Binesh and Mehdi Ghatee 

8.1 � INTRODUCTION AND RELATED WORK

In today’s digital age, the influence of social networks and virtual communication 
has become increasingly significant. Consequently, influence maximization (IM) 
has emerged as a critical issue within social networks (Li et al., 2020; Chen et al., 
2009, 2012; Peng et al., 2018). This problem encompasses various approaches to 
identifying influential nodes within the network’s graph (Li et al., 2020). However, 
it presents challenges due to networks’ high dimensionality and continuous growth. 
The diffusion of information in social networks is influenced by numerous factors, 
particularly the methods used for disseminating news, which specific diffusion mod-
els determine. Two of the most important and widely recognized diffusion mod-
els are the independent cascade (IC) model and the Linear Threshold (LT) model. 
Building upon these foundational models, various other diffusion models have been 
developed (Shakarian et al., 2015; Kim et al., 2014). Numerous algorithms have been 
designed to identify optimal initial nodes for broadcasting information. These initial 
nodes play a crucial role in the diffusion simulation, activating other nodes in the 
network in successive steps. This activation process continues, gradually increasing 
the number of active nodes until no new nodes are activated. In the independent cas-
cade (IC) model, active nodes independently trigger adjacent nodes. For example, if 
node u becomes active, it will independently activate its neighboring nodes, such as 
v and w, without being influenced by other active neighbors. In contrast, the activa-
tion of a target node, v, in the linear threshold (LT) model depends on the status of 
its neighboring nodes. Thus, the simultaneous activation of nodes u and w enhances 
the probability of v becoming active.

The characteristics of models like the linear threshold (LT) model help us iden-
tify influential nodes within clusters. In this diffusion model, selecting initial active 
nodes from the same cluster that share more common neighbors maximizes the 
effectiveness of these nodes. This highlights the importance of community discov-
ery in networks. Properly clustering and identifying the right communities, as well 
as selecting influential initial nodes within them, can significantly accelerate the 
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speed of information propagation and increase the number of final active nodes. 
However, many existing algorithms do not consider the properties of different diffu-
sion models. Greedy algorithms are widely used for influence maximization (Kempe 
et al., 2003; Leskovec et al., 2007; Goyal et al., 2011). Under the independent cas-
cade (IC) and LT models, greedy algorithms often yield optimal results. However, 
they are unsuitable for large-scale networks due to their long execution times and 
high memory consumption. In contrast, metaheuristic methods, such as genetic algo-
rithms, centrality-based methods, and random walk-based methods, focus on reduc-
ing execution time, though they do not guarantee optimal solutions. While these 
methods are faster than greedy algorithms, their accuracy and reliability depend on 
various factors (Sumith et al., 2018; Liu, 2017). The study of eigenvalues has gained 
considerable attention in various fields in recent years. Eigenvector centrality and its 
derived methods are commonly used to assess the importance of nodes (Ahajjam 
and Badir, 2018). These methods operate on the principle that a node’s significance is 
directly proportional to the importance of its neighboring nodes, leading to the com-
putation of eigenvectors. Certain techniques utilize community discovery to tackle 
different iterations of the influence maximization problem. For example, the GCC 
algorithm (Tripathi and Reza, 2019) employs eigenvalue analysis on the network’s 
adjacency matrix and uses the k-means clustering algorithm for clustering. It then 
selects initial nodes from the center of these clusters. Additionally, singular value 
analysis can be used for clustering and identifying effective structures.

Some approaches focus on detecting communities based on existing techniques 
for community detection and subsequently identifying initial influencers. Hajdu et 
al. (2021) integrated community detection with influence maximization (Hajdu et 
al. 2018). They employ various overlapping community detection methods in con-
junction with their algorithm, first computing the communities using a known algo-
rithm and then utilizing a greedy approach to identify initial influencers within the 
communities.

Bozorgi et al. (2017) introduced a novel propagation model with node decision-
making to tackle competitive influence maximization. Their approach involves 
extending the LT model and utilizing community structure to identify the minimum 
number of seed nodes for maximum advantage over competitors. Given the substan-
tial size of social networks, identifying communities within them is a challenging 
and time-consuming task. To address this, the researchers propose constructing a 
smaller network based on social distances between candidate nodes. Subsequently, 
they introduce an algorithm called distance aware LT (DALT) supported by a strong 
mathematical foundation.

The chapter delves into an introduction to social networks, influence maximiza-
tion, and diffusion models. It also discusses the construction of a smaller network 
containing candidate nodes, the computation of social similarity, and the definition 
of social distance between candidate nodes. Finally, the researchers present a math-
ematical model for influence maximization, define the Laplacian Plus matrix, and 
determine the eigenvectors corresponding to the largest eigenvalues. Additionally, 
they provide results for sample networks to validate the theoretical theorems and the 
DALT algorithm.
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8.2 � SOCIAL NETWORK SYMBOLS

Social networks can be modeled as a graph G V E� � �, , where V  contains nodes 
representing real or virtual people and E  contains edges indicating relationships 
between nodes. Their sizes are V n=  and E m= . These graphs can be weighted, 
directional, dynamic, multi-level, heterogeneous, multi-part, etc. Adj denotes the 
adjacency matrix of these graphs including zero and one elements, where 1 refers to 
the presence of an edge. In the case of weighted graphs, W  is defined to save edges’ 
weights. In directed networks, when exist an edge from node u to node v, it is said 
that node u follows node v, and two sets are defined for each node u corresponding 

to the nodes following u (followers), denoted with F uo , and the nodes that u  fol-
lows them (friends), denoted with F ur  . The input degree u  is D uin � �  and the output 

degree u is D uout � �. Trivially D u Foin u( ) | |=  and D u Frout u( ) | |= . In undirected 
networks, for each node u, deg u� � denotes the degree of u .

8.2.1 �I nfluence Maximization Problem (IM)

In the influence maximization problem, the goal is to select a set of initial nodes 
using network structural data that are expected to influence the largest number of 
network nodes. The diffusion method occurs based on a given model. In the general 
framework of all proposed models, each node is either passive or active. Information 
dissemination is done in separate time steps t T� �0 1 2, , , , . At step t = 0, the active 
nodes are given by A0. At  will be the set of active nodes in step t. In each step, 
active nodes can influence their neighbors to be activated, and so on. The termina-
tion meets when all nodes are activated. The details are as follows (Chen et al., 2013):

•	 The random diffusion model is a random process that occurs in a social 
network G V E� � �,  with discrete time steps. It involves generating the 
active set AT  for the initial influencers A0.

•	 The influence spread function in the social network G V E� � �,  for an 
arbitrary set S V⊆  and the network parameters P , is denoted as � G P S,� � � �,  
representing the mathematical expectation of the number of users affected 
by the set S under the network parameters P . The parameters in the set P  
can include the type of release model, content information, and other nec-
essary parameters depending on the problem. For simplicity, we use � .� � 
to denote � G P S,� � � � when G and P are known. Expanding the influence 
of � .� � gives the number of active nodes after the publication process is 
complete.

•	 The influence maximization problem for the social network G and diffu-
sion model M , with a positive number, aims to discover the set A0 including 
k primary nodes such that the influence spread �G M A, 0� �  is maximized. 
In other words,

	 A argmax S s t S V S kG M0 � � � � � �� , . . 	
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•	 The monotone influence function is an influence function that meets 
� �G M G MS S, , ’� � � � � for every S S V� �� .

•	 The submodular influence function is an influence function that satisfies

	 � � � �G M G M G M G MS v S S v S, , , ,�� �� � � � � � �� �� � � � �� � 	

for every S S V� ��  and v V S� �.
To intuitively check this property, it is possible to empirically test whether or not 

adding a member to the set when the number of members of the set is small has a 
greater effect than when the number of members of the set is large. This point is used 
in the greedy algorithms presented for this problem.

8.2.2 � Diffusion Models

Diffusion models can be divided into two general categories: progressive and non-
progressive. In progressive models, an active node cannot be deactivated in sub-
sequent steps. These models are usually used to show the acceptance of a new 
technology or product, such as watching a new movie or buying a smartphone.

However, in non-progressive models, activated nodes can revert to an inactive 
state. Non-progressive models are usually used to spread ideas and opinions about 
new events, etc., which may change their state and opinion based on new information.

Most Influence maximization algorithms use progressive models. Among the 
most important progressive models are the independent cascade diffusion (IC), the 
linear threshold diffusion (LT) (Kempe et al., 2003), and the mathematical model-
ing of infectious diseases such as susceptible, infectious, or recovered (SIR) (Jung 
et al., 2012). Common non-progressive models include Voter (Clifford and Sudbury, 
1973) and multiple disease models SIS (Kimura et al., 2009). Contagion models are 
originally used to study the spread of disease in biological populations (Chen et al., 
2013). In infection models, each person or node moves between several possible 
states, which generally include Susceptible, Exposed, infected, and removed (recov-
ered) states.

8.2.3 �I ndependent Cascade Diffusion Model

Goldenberg et al. (2001) explained the IC model, focusing on the propagation of 
information and emotions within a network (Wang et al., 2017). The IC model is 
sender-oriented, meaning that when a user v is activated, it attempts to indepen-
dently activate each of its followers with a probability of influence p u v,� �  for the 

edge e u v� � �, . The relation p u v
W u v

,
,� � � � �� � � �1 1 �  is used to determine the prob-

ability of propagation and the weighting of network edges. Here, α represents the 
importance of the news and models the activation speed of the nodes. In unweighted 
networks where W  is equal to Adj, the influence probability is the same for all edges 
and is equal to α. During propagation, a random threshold � u v,� �  is assigned to each 
edge. If node u  follows node v and node v is active in step t , then node u  will be 
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activated in step t +1 if the influence probability p u v,� �  is greater than or equal to 
the assigned threshold � u v,� � . The following rule outlies the results:

If v Fr A and p u v u vu t� �� � � � � � ��1 , ,� , then u  is added to At  .

Therefore, an active node in step t  can activate each of its followers separately and 
independently in step t +1. This process continues until no more nodes are activated, 
and the number of final steps is denoted by T . In the case of an undirected network, 
the calculations outlined above are performed for the neighbors of node u . In the IC 
model, selecting primary active nodes from various areas of the network can lead to 
better spread throughout the network, and nodes with higher degrees have a greater 
probability of activating more nodes in the first round.

8.2.4 �L inear Threshold Diffusion Model

In LT, an inactive user can become active if enough neighbors are active (Kempe 
et al., 2003, Granovetter, 1978). Thus, LT is receive-oriented and it is important to 
select the initial influencers with more neighbors.

Here, the influence of one node on another is represented by the weight u v,� � ,  
where this weight is determined from network information. The total weight of 
the output edges of each node should be less than or equal to 1. If the network is 
unweighted, then for each v Fru∈ , this weight will be calculated as

	 � u v
D uout

,� � � � �
1

.

where D uout � �  represents the number of friends of u. If the network is weighted, this 
weight is calculated as

	 � u v
W u v

W u j
j Fru

,
,

,
� � � � �

� �
��

.

In the LT model, there is a threshold � u� �  for any node u, which is a random number 
between 0 and 1 and changes randomly in each diffusion process. If the summation 
of the weight of the edges connected to its active neighbors is greater than � u� � , then 
the node u will be activated. Therefore, we can write if

	
v Fr Au t

u v u
� �� ��

� � �� � �
1

� �, 	

then u  will be added to At . In the undirected network case, calculations are per-
formed for the neighbors of node u, and deg u� � is used instead of D uout � � .

The propagation process continues until no new nodes are activated. In this 
model, the more friends of a node that are activated in step t, the more likely it is to 
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be activated in step t+1. Therefore, it’s important to distribute primary influencers 
in different communities, and within each community, select those that are closer to 
each other and have more common neighbors.

8.3 � GENERAL FRAMEWORK OF THE PROPOSED ALGORITHMS

In the realm of influence maximization, the adjacency matrix serves as the primary 
data structure. The objective of the algorithms is to identify key influencers capable 
of disseminating information across diverse communities. To facilitate this, the ini-
tial data undergoes dimensional reduction, resulting in a more compact network of 
candidate nodes. The edges within this network are weighted according to the social 
distances present in the original network. The algorithms presented in this disserta-
tion adhere to a generalized framework to tackle this challenge.

8.3.1 �C andidate Node Selection

First, the approach for identifying candidate nodes using structural information in 
the influence maximization problem is outlined. In real-world social networks char-
acterized by a large number of nodes, processing the entirety of network informa-
tion can be computationally intensive. To mitigate this issue, candidate nodes are 
extracted, thereby reducing the dimensionality of the input data. These nodes are 
collected in the set V', and the total number of candidate nodes is represented by l .  
The value of l  must be carefully selected to strike a balance between computation 
time and the accuracy of the method.

A subset of candidate nodes is selected to reduce the dimensionality of the input 
data and make subsequent computations more efficient. For undirected graphs, the 
Neighborhood Index (NI) measure is used to select candidate nodes based on their 
local influence as the following:

	 NI u
u

bn u
� � � � �

� � �
deg

1
	 (8.1)

in this relation, bn u v v is a neighbor of u and v u� � � � � � � �{ | degdeg } . This local 

index aims to identify nodes that outperform their immediate neighbors within their 
local scope. A higher NI  value for node u  indicates that it not only has a high degree 
but also outperforms its neighbors.

Candidate nodes which have the highest NI values are stored in the set � �V V . 
Then, the NI values are normalized by dividing each component of the vector by the 
maximum value.

8.3.2 �N umber of Candidate Nodes

The number of candidate nodes denoted as l V= ’ depends on processing power 
and is essential in generating different distance matrices affecting the spreaders. By 
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changing the value of l  for different networks, we selected different percentages of 
nodes. For each value of l , different distance matrices are generated that can affect 
the spreaders. The results show that the value of l  does not significantly impact the 
output results because significant nodes are selected. Therefore, to save time and 
memory, a value like l n� �0 01.  can be applied in the algorithms.

After identifying candidate nodes, the computation of similarity features between 
these candidate nodes is described in the next section.

8.3.3 �S imilarity Graph Construction for Candidate Nodes

The concept of similarity can differ depending on the network being analyzed. Palla 
et al. (2005) proposed that similar nodes within a network often form communities. 
In a social network context, node similarity is defined by the number of direct and 
indirect communication pathways between them. To effectively capture these simi-
larities as new features, we have developed algorithms based on random walks for 
their computation. This process entails calculating a similarity matrix using struc-
tural information, specifically the adjacency matrix of the network, to identify key 
nodes. The random walk process involves traversing a sequence of nodes over a 
defined number of steps, with each sequence representing a path to a randomly cho-
sen destination node. These paths can be either direct or indirect. To quantify this 
movement, we utilize a probability matrix, π, which expresses the likelihood of tran-
sitioning from one node to another within the network. If the random walker begins 
at a specified node i  at the start, the transition probabilities � j i st, ,� � are computed 
using the relationship:

	 � �:, , :, , ,i st Q i stT� � � �� �1 	

where st  is the step number of a random walker and st d=1,..., , and Q is a matrix 

obtained from the adjacency matrix and Q i j Adj i j deg i, , /� � � � � � �.
To determine the initial value for the vector � :, ,i Rn0 1� �� �  in step zero, the 

ith component of this vector is set to 1 and the rest of the components are set to 
zero, which means that the random walker starts from the node i  (Liu and Lü 2010, 
Wang et al. 2013). Now, in each step st , to determine the probabilities of the random 
walker moving between candidate i  and j , we store the probabilities in the matrix 

P i j st Rl l d, ,� �� � �  , taking into account the degrees of the nodes, as follows:

	 P i j st P j i st
i

G
j i st

j

G
i j s, , , , , , , ,� � � � � � � �

� �
� � � � � �

� �
�

deg deg

� �
� � tt� � 	 (8.2)

where Δ(G) is the maximum degree of all network nodes. For each pair of candidate 

nodes, the similarity is then stored in the symmetric matrix Sim Rl l� �  by summing 
the transition probabilities over all steps:
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	 Sim j i P j i st s
st

d

, , ,� � � � �
�
�

1

	 (8.3)

In the following sections, this similarity matrix is utilized to calculate the social 
distance in the proposed algorithms.

8.3.4 �S ocial Distance (SD)

After selecting the feature vectors for candidate nodes, the next step is to deter-
mine the social distance between these nodes. The social distances should contain 
the necessary information to reach better answers. Social network data is initially 
represented by the adjacency matrix, which captures connections between nodes. 
Weighted networks use the weight matrix to encode the strength of these connec-
tions, enabling a more detailed measure of node similarity. In many scenarios, the 
distance between nodes is essential. Different algorithms, such as Dijkstra’s algo-
rithm, have been presented to calculate the distance between nodes. There are also 
methods to calculate the distance by inverting the similarity data or subtracting it 
from a constant in some references (Wang et al. 2013).

In the proposed social distance algorithm, it is assumed that the similarity matrix 
(Sim) containing the similarities between nodes is given. With the appropriate simi-
larities calculated by the random walk process, in this algorithm, we first calculate 
the number of non-zero values for each node i  from its similarity vector, Sim i:,� �, 
which contains the similarity between i  and other nodes in the network, and show it 
by f i� � . Then, we sort the values of the vector Sim i:,� � in descending order so that 
the values of the sorted data are stored in the vector Ci and their indices are stored 
in the vector Indi . Then, for each index j l�� �1,..., , the distance between the node 

i  and its jth  neighbor in the list Indi , i.e., Ind ji � �, is calculated using the following 
conditional structure:

SD i Ind i j

j

f i
j f i and C j C j

SD i Ind

i i
, _

,

,

, _

� �� � �

�

� �
� � � � � � � �� �

0 1

1
2 1

ii j C j C j

otherwise

i i�� �� � � � � �� �

�

�

�
�
�

�

�
�
�

1 1

1

� (8.4)

When i j≠  and i  and j  are similar, the calculated value for SD i j,� � should be small. 
For each node i , the index of the nearest node is in Indi 1� �, and we set the smallest 

SD  equal to 
1

f i� �
​. The index of others is saved in index Ind ji� �, where j f i� � �2,..., .  

Here we have two cases:
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	 1.	 If the similarity of this node to i  is not equal to the similarity of the previ-
ous node in the list to i , i.e., ( )C j C ji i� � � �� �1 , the distance will be equal 

to 
j

f i� �
​.

	 2.	 If the similarity of this node to i  is equal to the similarity of the previous 

node in the list to i , i.e., C j C ji i� � � �� �� �1 , then the distance of this node 

to i  will not change and we have Dis i Ind j Dis i Ind ji i, ,� �� � � �� �� �1 .

Additionally, the node with the least similarity and nodes with zero similarity will 
also have a distance of 1 from the node i .

Figure 8.1 shows how the above algorithm works on a sample node. Since SD .,.� � 
is not symmetric, we replace it as SD SD SDT� �� �0 5. .

Binesh and Ghatee (2021) reported the effectiveness of the social distance metric 

SD  compared to other distance metrics, where the social distance SD was more 
suitable for identifying communities and selecting spreaders, especially in large net-
works. For example, in the social network Zachary karate club in Figure 8.2, the 
neighbors of nodes 34, 8, and 7 are represented by squares, diamonds, and triangles, 
respectively. Based on the connections visible in this figure, it is evident that nodes 
34 and 8 share more common neighbors and a shorter distance.

FIGURE 8.1  How to calculate the distance SD for node 1 from the similarity vector.

FIGURE 8.2  Zachary Karate Club network.
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However, nodes 34 and 7 share fewer common neighbors (direct or indirect), 
and we expect the social distance between nodes 34 and 7 to be greater than the 
social distance between nodes 34 and 8. The SD results confirm these expectations 
so that SD 34 8 0 39, .� � �  while SD 34 7 0 6, .� � � . Similar results are observed for 
nodes 1 and 3 which have different closeness to 34, so that SD 34 1 0 22, .� � �  while 
SD 34 3 0 06, .� � � .

However, if we calculate the distance using basic shortest-path algorithms such as 
Dijkstra’s algorithm, the distances between node 34 and nodes 7 and 8 are equal, as 
are the distances from node 34 to nodes 1 and 3 (Binesh and Ghatee, 2021). This is 
because these algorithms do not consider the various paths that exist between nodes. 
In social networks, however, these paths have a significant impact on information 
diffusion. These observations demonstrate that the SD method is more consistent in 
the selection of spreaders, thereby signifying its effectiveness.

8.4 � MODEL FORMULATION FOR FINDING INFLUENCERS 
IN LINEAR THRESHOLD DIFFUSION

8.4.1 �M odel Objectives

In the linear threshold (LT) diffusion, a node will be active when a certain number of 
its neighbors are already active. Therefore, at the initial stage, selecting seed nodes 
from among those with the most common neighbors significantly increases the prob-
ability of activating their common neighbors.

Communities inherently foster a higher degree of interaction among their mem-
bers compared to individuals outside the community. This localized interaction pat-
tern has a decisive role in limiting the diffusion process within the boundaries of 
the community, preventing it from spilling over into other communities. Thus, we 
should identify implicit communities in a new candidate network and select some 
influencers from each community.

Consequently, in this model, influential nodes should be chosen from among the 
candidate nodes with the highest values, ensuring they are spread across different 
communities and have a higher number of common neighbors.

The proposed model should consider the following objective functions:

	 1.	Maximizing Global Coverage: Seed nodes should be spread across different 
communities and have the maximum possible global distance from each other.

	 2.	Maximizing Local Overlap: Seed nodes within a community should be 
close to each other to have the most common neighbors and the least local 
distance from each other.

8.4.2 �R egularized Distance Measure

To achieve the mentioned objective functions, after calculating the social distance 
(SD ), we regularize the distance between each pair of candidate nodes using their 
number of common neighbors (MN ):
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	 D i j
SD i j

MN v v
R

i j

’ ,
,

,
� � � � �

� � �1
	 (8.5)

where MN  is calculated as follows:

	 MN Adj Adj= * 	

Here “*” denotes matrix multiplication. We also normalize these values to the range 
0 1,� � as follows:

	 MN
MN

max MN
�

� �
	

As a result, MN i j,� �  represents the normalized number of neighbors between nodes 
i  and j .

We then construct a graph consisting of the candidate nodes from set V ’ and con-

sider D i jR
’ ,� � as the weight between candidate nodes i  and j . If nodes i  and j  are 

close to each other and have many common neighbors, D i jR
’ ,� � will be small. On the 

other hand, for nodes inside various clusters that are far apart, this weight will be large.

8.4.3 �M athematical Representation of Objective Functions

If DR
’  is the regularized distance matrix in the LT model, based on Equation 

(8.5), and we have two arbitrary sets of nodes A and B, we define the set distance 
Set A BDis ,� �  as follows:

	 Set A B D a bDis
a Ab B

R, ,’� � � � �
� �
�� 	

We also denote the sum of NI weights, for the members of an arbitrary set A, by 
Set ANI� �:

	 Set ANI� � � � �
�
�
a A

NI a 	

In a network containing c clusters, let ci be the set of seed nodes in cluster i , so the 
union of these seed nodes form set A0 is:

	 A U cii
c

0 1= =
	

It is important to pay attention to this point that we are currently in the candidate 
nodes space. When we talk about clusters, we're referring to groups created in this 
candidate node space. The weighted objective function below aims to maximize the 
distance between the seed nodes and the other candidate nodes in a cluster, while 
minimizing the distance between the seed nodes within a cluster. Additionally, the 
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last part of this objective function encourages the selection of nodes with higher 
local weight within each cluster:

	 max , ,
i

c

Dis i Dis i i NI iSet c V Set c c Set c
�
� � � � � � � � � � � ��

1
1 2 3� � � 	 (8.6)

We can assign various values to ω ω ω1 2 3, ,  based on the importance of each object. 
For simplicity, let’s set � �1 21 1� �, , and �3 � l , which is the size of the new network.

For each cluster i c=1,..., , we define a binary vector s Ri
l� �1 such that if node j  

is a seed node in cluster i , then s ji � � �1. This binary vector represents the cluster 
membership of the candidate nodes. Now, the set distance between node ci and the 

rest of the candidate nodes, i.e., Set c VDis i , �� �, can be written as s D si
T

R i
’ ​, where DR

’ ​​ 

is a diagonal matrix which DR
’ i i,� � represents the sum of elements of the ith row in 

the regularized distance matrix DR
’ ​.

Similarly, the sum of distances between seed nodes within cluster i  can be writ-

ten as s D si
T

R i
’ . Additionally, Set cNI i� � can be expressed as s NI si

T
i

 ​, where NI  is a 

diagonal matrix which NI i i NI i ,� � � � � .
Substituting these expressions into Equation (8.6), we obtain the following refor-

mulated objective function:

	 max
i

c

NI
�
� � � � � �

1
1 2 3� � �s D s s D s s si

T
R
’

i i
T

R
’

i i
T

i
 	 (8.7)

8.4.4 �L aplacian Plus Matrix

We define the Laplacian-Plus matrix L+  as:

	 L D NIR
� � � �� � �1 2 3

’
R
’D  	 (8.8)

This matrix incorporates the regularized distance measure and the node importance 
values into a single representation based on our goals.

Using Equation (8.8), we can rewrite the objective function of Equation (8.7) as:

	 max s si
T

i
i

c

L
�

��
1

	 (8.9)

which is equivalent to the following optimization problem:

	 max
s s

s s
i
T

i

i
T

ii

c L

�

�

�
1

	 (8.10)
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8.4.5 � Definition of H Matrix

To solve this optimization problem, we introduce a normalized vector hi ​ for each 
cluster i  as:

	 h
s

s s
i

i

i
T

i

= 	

By substituting hi​ into Equation (8.10), we obtain:

	 max h h
i

c

i
T

iL
�

��
1

	

Let the normalized vector hi​ represents the ith column of matrix H. Matrix H is an 
l c×  matrix, where l  is the number of candidate nodes and c is the number of clusters. 
The H j i,� � is defined as:

	 H j i c
if j c

othewise

i

i
,

,

,

� � �
��

�
�

�
�

1

0

	 (8.11)

In this equation, ci represents seed nodes number in cluster i .

The diagonal elements of the matrix H L HT + represent the normalized objec-

tive function for each cluster. Specifically, the i i,� �th  element represents the “total 
distance between seed nodes within cluster i  and the remaining candidate nodes” 
minus the “distance between pairs of seed nodes within cluster i .”

Therefore, maximizing the diagonal elements of the matrix H L HT +  aligns with 
the objectives defined in the LT model.

8.4.6 �S implified Optimization Problem

The columns of the matrix H are orthonormal, indicating that H HT = Ic​, where Ic  
is the identity matrix of dimension c c× . This property simplifies the optimization 
problem by removing the constraint on matrix H , and gives the following simplified 
optimization problem:

	 maxtr H L HT �� � 	

	 s.t     H H IT
c= 	 (8.12)

In this mathematical model, tr  indicates trace of matrix as the summation of diago-
nal entities of matrix.
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The matrix H is a crucial component of the eigenvector-based solution for the LT 
model.

8.4.7 �O ptimal Solution of the Model

The objective function in Equation (8.12) is maximized by the eigenvectors corre-

sponding to the c largest eigenvalues of the Laplacian Plus matrix L+ , subject to the 

constraint H HT = Ic​. According to the Rayleigh-Ritz Theorem (Lutkepohl, 1997), 
which is a fundamental concept in linear algebra that applies to symmetric matrices, 
the optimal solution to the optimization problem defined in Equation (8.12) is the 
matrix H, where the columns are the mentioned eigenvectors.

Theorem: Let A Rn n� �  be a symmetric matrix with eigenvalues � � � �1 2 3� � � �... n​ 
and orthonormal eigenvectors u1​ to un​, respectively. For k n�� �1 2, ,..., , the following 
relationship holds:

	 max tr U AU U R U U IT n k T
k n k n k n� � � �� � � � ����

� � � �: , � � �1 2 	

where U  is the matrix that maximizes this objective function and can be stated as 
U u u un k n k n� � ����� ��� � � �1 2  whose columns are the k  eigenvector of matrix A  
correspond to k  largest eigenvalues.

Corollary

Based on the matrix H definition in Equation (8.11), we can calculate the highest 
absolute value in each row of H and construct the vector hmax as follows:

	 h i H i jmax
j c

� � � � �
� �
max

1, ,
,# #	

	 h h imax max� � �� �	
vector hmax​ represents the normalized maximum values for each cluster.

8.4.8 � DALT Algorithm

The LT propagation model is used for understanding how information spreads in 
networks. Influential nodes are nodes that have a significant impact on the spread of 
information. The distance aware LT (DALT) algorithm explains how to select influ-
ential nodes in the LT diffusion model and is particularly useful for large networks. 
The DALT algorithm works in three phases:

•	 1-Candidate Node Selection: Identify potentially influential candidate nodes.
•	 2-Normalized Distance Matrix Calculation: Calculate a normalized dis-

tance matrix to show how similar candidate nodes are to each other.
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•	 3-Optimization Model Solving: Solve the optimization model to choose the 
most influential nodes from the candidate nodes.

In the DALT algorithm, the edge weight between two candidate nodes in the repre-
sentation graph is determined based on the number of common neighbors between 
the two nodes. The algorithm calculates the Laplacian-plus matrix and determines 
the number “c” of eigenvectors corresponding to the largest eigenvalues of the 
Laplacian-plus matrix. These eigenvectors are stored in a matrix H. Finally, the larg-
est element in absolute value in each row of the matrix H is selected and added to the 
vector. Then, the spreader nodes are greedily selected from the vector ​ and added to 

the set A0
’ ​. The set​ contains the index of influencers in the candidate space, which 

is not equal to their main indices. In the next step, the corresponding indices from 
the set V ​ are selected and stored in the set A0​. You can find a review of the DALT 
algorithm in Figure 8.3.

The pseudocode of this algorithm is as follows:

Algorithm: DALT

Input: Adj , k , l , d , c

Output: Initial influencer nodes (A0)

1.  Selection of anchor nodes:

Input: Adj , l .

Output: ′V  , NI .
	 1.1.  Calculation of bn i� � and deg i� �  for all nodes.
	 1.2.  Calculation of NI  according to Equation (8.1).
	 1.3.  Selection of l  anchor nodes which have highest NI i� � and store in ′V .

The matrix H is a crucial component of the eigenvector-based solution for the LT 
model.

8.4.7 �O ptimal Solution of the Model

The objective function in Equation (8.12) is maximized by the eigenvectors corre-

sponding to the c largest eigenvalues of the Laplacian Plus matrix L+ , subject to the 

constraint H HT = Ic​. According to the Rayleigh-Ritz Theorem (Lutkepohl, 1997), 
which is a fundamental concept in linear algebra that applies to symmetric matrices, 
the optimal solution to the optimization problem defined in Equation (8.12) is the 
matrix H, where the columns are the mentioned eigenvectors.

Theorem: Let A Rn n� �  be a symmetric matrix with eigenvalues � � � �1 2 3� � � �... n​ 
and orthonormal eigenvectors u1​ to un​, respectively. For k n�� �1 2, ,..., , the following 
relationship holds:

	 max tr U AU U R U U IT n k T
k n k n k n� � � �� � � � ����

� � � �: , � � �1 2 	

where U  is the matrix that maximizes this objective function and can be stated as 
U u u un k n k n� � ����� ��� � � �1 2  whose columns are the k  eigenvector of matrix A  
correspond to k  largest eigenvalues.

Corollary

Based on the matrix H definition in Equation (8.11), we can calculate the highest 
absolute value in each row of H and construct the vector hmax as follows:

	 h i H i jmax
j c

� � � � �
� �
max

1, ,
,# #	

	 h h imax max� � �� �	
vector hmax​ represents the normalized maximum values for each cluster.

8.4.8 � DALT Algorithm

The LT propagation model is used for understanding how information spreads in 
networks. Influential nodes are nodes that have a significant impact on the spread of 
information. The distance aware LT (DALT) algorithm explains how to select influ-
ential nodes in the LT diffusion model and is particularly useful for large networks. 
The DALT algorithm works in three phases:

•	 1-Candidate Node Selection: Identify potentially influential candidate nodes.
•	 2-Normalized Distance Matrix Calculation: Calculate a normalized dis-

tance matrix to show how similar candidate nodes are to each other.

FIGURE 8.3  A schematic review of DALT algorithm.
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2.  Computation of regularized distance:

Input: Adj , ′V , d .

Output: DR
’ .

	 2.1.	� Running random walk d  times, computing similarity values Sim for 
nodes in ′V  based on Equations (8.2)–(8.3).

	 2.2.	 For any i V� �
	 2.2.1.	� Calculation of C Ind sort Sim ii i, :,� � � � �� � to finding the decreasing 

sorted values Ci and the corresponding indexes Indi

	 2.2.2.	 Computing SD i Ind ji, � �� � based on Equation (8.4) For all j l�� �1,..., .

	 2.2.3.	� Computing the regularized distance D i jR
’ ,� � according to Equation 

(8.5) For all j l�� �1,...,  .

3.  Selection of spreaders based on the optimization model:

Input: ′V , DR
’ , NI , c and k  .

Output: A0.

	 3.1.  Set � �1 2 1� � , �3 � l , and define L D D NIR R
� � � �� � �1 2 3

’ ’
 .

	 3.2. � Computation of the eigenvectors corresponding to c largest eigenvalues 
of L^+ and putting them to columns of H.

	 3.3. � Calculation of h i H i jmax j c� � � � ��max 1,..., ,  and hmax maxh i� � �� �, for 

all anchor nodes i l�� �1,..., .
	 3.4. � Extraction of the indices of the k  greatest values of hmax and store them 

in the set A l0 1 2’ � � �, ,....,  in anchors space.
	 3.5. � Find the corresponding indices from set V  and construct spreader set 

A v i Ai0 0� �� �: ’ .

To see the performance of DALT on some benchmarks, one can refer to Binesh and 
Ghatee (2022).

8.5 � DETERMINING THE NUMBER OF COMMUNITIES 
IN THE CANDIDATE NODE SPACE

In the previous section, the parameter c in the proposed mathematical model repre-
sents the number of hypothetical communities in the candidate node space, which 
may not directly correspond to the number of communities in the main network. In 
the DALT algorithm, c eigenvectors corresponding to the c largest eigenvalues of the 
Laplacian matrix should be considered based on this parameter. We can determine 
the number of required eigenvectors from the first gap among the largest eigenvalues 
of the Laplacian matrix. For this purpose, we need the following definitions:
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•	 In  is the identity matrix of size n n×  and On is a matrix of size n n×  where 
all entries are equal to 1. on is a vector of size n×1 where all entries are 
equal to 1.

•	 The eigenvalues of any symmetric matrix A  of size n n×  are denoted by 
� � �1 2A A An� � � � � � � � �... , where �1 A� � is the smallest and �n A� �  is the 
largest eigenvalue of A .

•	 The set of eigenvalues of the matrix A  is denoted by � A� �  and is given by:

	 � A A i n� �� � � �� �{ | , ,..., }�i 1 2 	

•	 If the eigenvalues of the matrix A  are not distinct, this set contains repeated 
elements.

•	 If A  is a symmetric matrix with size n n× , then all its eigenvalues are real 
and it has n orthogonal eigenvectors (Lutkepohl, 1997).

•	 For any matrix A , the matrix � A� � is a diagonal matrix such as each diago-
nal element is equal to the sum of the corresponding row elements of A . 
This means that if A  is the matrix of adjacency of a network with n nodes, 
and the degree of each node i  is denoted by deg i� � , we have:

	 � A diag deg deg deg n� � � � � � � � �� �1 2, ,..., 	

•	 For any symmetric matrix A , the Laplacian matrix of A  is denoted by 
L A� �  and is calculated as follows:

	 L A A A� �� � � �� 	

•	 Any Laplacian matrix of size n n×  is a symmetric and positive semi-defi-
nite matrix, meaning all its eigenvalues are non-negative and it has at least 
one eigenvalue equal to zero, with the corresponding eigenvector being the 
vector on (Van Mieghem, 2010).

•	 If the graph G is an undirected graph with positive weights, the number 
of zero eigenvalues of its Laplacian matrix is equal to the number of con-
nected components in the graph (Van Mieghem, 2010, Von Luxburg, 2007).

•	 If A  is the network adjacency matrix with size n n× , the distance matrix D  
is defined as follows:

	 D O I An n� � 	

Corollary 1: The Laplacian matrix is a symmetric matrix, and its eigenvectors 
are pairwise orthogonal. Furthermore, the vector u on1 =  is the eigenvector corre-
sponding to the smallest eigenvalue of the Laplacian matrix, and it is orthogonal 
to all other eigenvectors. This means that if u u un1 2, ,...,  are the eigenvectors of the 
Laplacian matrix, we have:
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	 � �� � �i n u uT
i2 3 01, ,..., , .	

As a result,

	 � �� � �i n o un
T

i2 3 0, ,..., , .	

In other words, for the eigenvectors from the second to the last of the Laplacian 
matrix, the sum of their components is zero.

Theorem 1: If A  is the network adjacency matrix and D  is the corresponding 
distance matrix, the relationship between their corresponding Laplacian matrices is 
as follows:

	 L D n I O L An n� � � � � � � �	

Proof

According to the Laplacian matrix definition:

	 L D D D� � � � � �� 	 (8.13)

and in the matrix D , the sum of the elements of row i , for i n�� �1 2, ,..., , is equal to 
n deg i� � � �1 , therefore, we have:

	 � �D n I An� � � �� �� � � �1 	

Thus, Equation (8.13) can be rewritten as:

	

L D D D

n I A O I A

n I I A O I A

n

n n n

n n n n

� � � � � �
� �� �� � � � � � �� �
� � � � � � � � �

�

�
�
�

1

�� � � � � �� �
� � � � � �

I O A A

n I O L A

n n

n n

�
	

Theorem 2: If A  is the networks adjacency matrix with size n n×  and D  is the 
corresponding distance matrix, the set of eigenvalues of their Laplacian matrices is 
identical, and we have

	 � �L D L A� �� � � � �� �	

and for j n�� �2,..., , if λ j  is an eigenvalue of the Laplacian matrix L A� � , n j�� ��  
will be an eigenvalue of the Laplacian matrix L D� � .
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Proof

If u u un1 2, ,...,  are the eigenvectors of the Laplacian matrix L A� � , corresponding to 
the eigenvalues

	 � � �1 2L A L A L An� �� � � �� � � �� �, ,..., 	

One can obtain: �1 0L A� �� � �  and u on1 = . In the Laplacian matrix L D� � , the small-
est eigenvalue is also 0, and the corresponding eigenvector is on.

For the other eigenvectors of the matrix L A� � , for j n�� �2,..., , according to 
Theorem 1, we have:

	
L D u n I O L A u

n I u O u L A u

j n n j

n j n j j

� � � � � � � � �� � �
� � � � � � � � �

	

In the above expression, n I u n un j j� � � � . Additionally, the value of O un j⋅  is zero, 

because based on Corollary 1, the sum of the elements in each of the eigenvectors of 
the Laplacian matrix, except for u1, is zero. As a result, the above equation simplifies:

	

L D u n u L A u

n u L A u

n L A u

j j j

j j j

j j

� � � � � � � � �
� � � � �� � �
� � � �� �� � �

�

�

	

As a result, u j is an eigenvector of the Laplacian matrix L D� � , corresponding to the 

eigenvalue n L Aj� � �� �� �� .

Therefore, for j n�� �2,..., , if λ j  is an eigenvalue of the Laplacian matrix L A� � ,  
n j�� ��  is an eigenvalue of the Laplacian matrix L D� � . The eigenvalue zero also 

exists in both Laplacian matrices, thus the proof is complete. 
Theorem 3: If A  is the network adjacency matrix, with size n n× , and D  is the 

corresponding distance matrix, and if the network contains c connected compo-
nents, the number of c −1 eigenvalues in the Laplacian matrix L D� �  is equal to n, 
which are the largest eigenvalues of the Laplacian matrix L D� � .

Proof. If the network has c connected components, the number of eigenvalues 
of the Laplacian matrix L A� �  that equal to zero is c. Excluding the first smallest 
eigenvalue, according to Theorem 2, for j n�� �2,..., , if λ j  is an eigenvalue of L A� � ,  
n j�� ��  will be an eigenvalue of L D� � . Therefore, for j c�� �2,..., ,

	 n n nj� � � �� 0 	

As a result, c −1 of the largest eigenvalues of the Laplacian matrix L D� �  is equal to n. 
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In real networks, the graph is typically connected and not composed of separate 
connected components. Consequently, the Laplacian matrix has only one eigenvalue 
equal to zero. The first gap in the eigenvalues of the Laplacian matrix can provide an 
estimate of the number of clusters, and the corresponding eigenvectors can serve as 
fundamental components.

The first eigenvector of the Laplacian matrix is a multiple of the vector on, in 
which all components are identical and provide no information. Hence, when using 
the eigenvectors of the Laplacian matrix, only around c −1 eigenvectors related to the 

second to the cth eigenvalues contain valuable information.
Referring to Theorem 3, in the distance Laplacian matrix, the approximate cluster 

number can be estimated from the first gap among the largest eigenvalues. In this 
context, if the first gap occurs after α  large eigenvalues, we choose eigenvectors 
related to the α  largest eigenvalues of the Laplacian of distance matrix as cluster 
indicator vectors.

To graphically observe the derived theorem, consider the network in Figure 8.4, 
composed of three connected components.

For this network, we computed the distance matrix D  and the Laplacian of it as 
L D� � . Figure 8.5 presents their first 10 largest eigenvalues.

In this figure, it is observed that two of the largest eigenvalues are equal to 20, 
confirming Theorem 3. The eigenvectors corresponding to these two eigenvalues are 
shown in Figure 8.6, which can be used to identify the clusters in this network. The 

FIGURE 8.5  The 10 largest eigenvalues of Laplacian of the distance matrix, L D� �, for the 
network in Figure 8.4.

FIGURE 8.4  A sample network containing three connected components.
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eigenvectors are orthogonal to each other and all have a length of one, resulting in a 
mix of positive and negative values.

In this figure, the first cluster has positive values for the first eigenvector and 
negative values for the second eigenvector. The second cluster has negative values for 
both eigenvectors, while the third cluster has positive values for both eigenvectors.

To showcase the effectiveness of the DALT algorithm, we computed the Laplacian-
plus matrix for this network and presented its eigenvalues in Figure 8.7.

In this figure, it is observed that the first largest gap occurs after the third eigen-
value. Consequently, the DALT algorithm selects three eigenvectors corresponding 
to these three eigenvalues as the columns of the matrix H .

Based on the algorithm, the maximum absolute value of each row of the matrix 
H  is stored in the vector hmax. Based on the values obtained in this vector, the nodes 
18, 2, 10, 12, and 15 are selected for k = 5.

8.6 � SUMMARY

In this chapter, we delved into the intriguing concepts surrounding the influence 
maximization problem. We defined the problem and discussed various diffusion 
models, including the independent cascade (IC) and linear threshold (LT) models, 
while also introducing a novel perspective on the topic. The LT model is commonly 
utilized in real social networks to represent information diffusion. According to this 
model, when multiple friends share news, your likelihood of believing it increases. 

FIGURE 8.7  The eigenvalues of the Laplacian-plus matrix L+  for the network in Figure 8.4.

FIGURE 8.6  Two eigenvectors related to the first and second eigenvalues of Laplacian of 
the distance matrix, L D� �, for network in Figure 8.4.

FIGURE 8.5  The 10 largest eigenvalues of Laplacian of the distance matrix, L D� �, for the 
network in Figure 8.4.
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Therefore, selecting influencers from various communities is essential in the LT 
model to maximize diffusion effectively. However, directly identifying communi-
ties within large social networks can be a time-consuming process. To address this 
challenge, we proposed a method to reduce the network size by strategically select-
ing candidate nodes. We then computed the similarities between these candidate 
nodes and all other nodes in the network. From there, we defined a social distance 
based on these similarities and introduced the DALT algorithm. DALT is a tech-
nique crafted to identify influencers aimed at maximizing diffusion across social 
networks. This approach encompasses the reduction of network size through the 
selection of key candidate nodes, followed by the calculation of social distances, 
ultimately leading to the application of a mathematical model to identify implicit 
communities within the reduced network. Solving the model requires computing 
the eigenvectors corresponding to the largest eigenvalues of the Laplacian matrix, 
constructed from the regularized social distances. After obtaining the eigenvectors, 
a new feature space is formed, from which influencers are extracted using a greedy 
approach.
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9.1 � INTRODUCTION

In people-centered communication, “connected communities” is understood as a 
group of people who can use such communication, a relationship that improves the 
way people exchange resources, information, or help. This is where contemporary 
technology and social media are helping relate people more closely to one another 
and with other institutions. Connected communities have high level of social capital, 
characterized by the creation and maintenance of trust and social networks among 
members for the purpose of collective benefit and efficacy [1]. To maintain ongoing 
relationships and facilitate communication and coordination in real time, these 
groups usually use some technology platform [2]. The use of these new ways of digi-
tal tools results in more efficacious and computerized forms of participation within 
civic engagement and community activities whereby many members actively join 
participatory initiatives including decision making [3]. This intrinsic connectivity 
helps overcome the barriers created by physical distances, making it easier for peo-
ple to engage in productive relationships, regardless of their geographical location 
[4]. Oldenburg [5] also highlighted that connected communities particularly stress 
the importance of face-to-face meetings and the role of physical space in bringing 
people together and doing things. They do not function in a vacuum of only online 
activities. Connected communities foster benefits like ease of access to information, 
increase in collaboration opportunities and increased feelings of belongingness 
among the members [6]. Since these communities have developed social networks 
and structures, they are also more capable of addressing various issues and crises [1]. 
Furthermore, they promote inclusiveness by ensuring that each member belonging to 
the community is able to make their opinion known and heard, fostering a 
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background that is more of democracy and participation [3]. In general, acute com-
munities alter how people interact and work with one another through the use of 
social networks and technology in building more integrated communities. These 
communities are kept active and adaptable to the conditions by giving more empha-
sis on virtual as well as conventional communication [4]. Social networks are relative 
structures composed of actors (tautologically called nodes) who are linked with each 
other in various relationships, such as close kin, common friends, common fields of 
interest, money relations, and/or information exchange. Such networks are of great 
importance in the social sciences as they explain the pattern of flow of resources, 
information and response patterns within and across units. Simply put, social net-
works are composed of actors who are contained in the nodes and social ties that 
connect them to each other. The type, direction, and magnitude of these relationships 
play crucial roles in the behavior of the network. The most common relationship is 
termed the “strong tie” between family or close friends, which is characterized by 
high emotional closeness and high contact, whereas the most common “weak tie” is 
the one that exists between acquaintances which opens up new opportunities and 
new information different from one’s social circle [7]. Usually, the structure of a 
social network is presented in the form of graphs or matrices in which nodes illus-
trate people or other entities and edges indicate the links among these nodes. Density 
and centrality are two important parameters that help to break down these systems. 
Density is a measure of the connectivity of the system, in this context expressed as 
the fraction of existing connections relative to the possible connections in the net-
work. Centrality identifies vital nodes in the network the importance of which is 
defined in terms of their position and their connection to other nodes [8]. Therefore 
there are professional social networks and career-based relationships, personal social 
networks and intra-member relationships, Internet-derived social networks, and 
organizational networks that are within and beyond organizational boundaries. 
Social Networks are very important in construction of the social behavior, culture, 
and identity, the provision of information or resources, influencing the actions of 
people, providing behavioral reward [9]. In situations such as pandemics or other 
public health crises, there is a strong emphasis and role that social networks play in 
information spread, promotion of health and emotional assistance [10]. Different 
models have been constructed in order to research social networks. The Social 
Network Theory has as its main premise the position occupied by the member in the 
context facilitates a member’s possession of resources and information and that the 
structure of the system dictates how individuals act. The concept of Social Capital 
began with Bourdieu in [11] and underwent further development through Coleman 
[12] and Putnam [1] as its notable experts explain that social structures grant certain 
resources to individuals with respect to trust, aid, or collaboration. In the work by 
Burt [9], the Structural Hole Theory, it is pointed out that individuals having the 
capacity to link two or more different clusters within a network can obtain diverse 
information and relations, hence enabling them to compete effectively. The rising 
capabilities of computer technology have contributed to a transformation of social 
networks where social sites such as Facebook, LinkedIn, and X among others could 
be used for connecting large networks that are cross border. Furthermore, these tools 
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help mobilize resources and disseminate information more effectively and quickly 
which has great implications in the social, political, and economic activities [13]. 
However, there are a number of drawbacks to the societal networks such as the haz-
ards of spreading simulation of reality, reinforcing existing social inequalities, and 
“echo chamber” phenomena, whereby people only hear what they choose to believe 
and resist opposing views. The issue of data security and privacy, in social network 
analysis, for instance, is always a moral issue [14]. Contact with social networks is of 
great importance for public health because they improve health communication and 
promote health-related behaviors. Such integration, both offline and online, can help 
people in sharing information about various health risks, protective measures, and 
options of coping with health problems [15]. Popular social media platforms have 
helped people to know more about immunization campaigns and have encouraged 
them to participate or take part in the campaigns more actively [16]. Further, social 
channels provide other members of the society, friendship and kinship which are 
essential to the mental health of individuals. People try to obtain help whenever they 
have health problems through family members, friends, or the Internet [17]. It has 
been said that social support plays a constructive role by alleviating stress and 
enhancing recovery from illness [18]. However, social networks may have a better 
impact on health behaviors by creating norms and rules. If healthy food and regular 
exercise are the norms among their peers, they are likely to endorse healthy behavior 
[19]. The possibility of reaching different segments of the population because of 
social network outreach is beneficial also for health promotion activities. Social 
media outreach in particular can be effective in contacting specific demographic 
groups who are otherwise difficult to reach with other types of media [20]. Because 
these advertisements are able to be targeted toward specific communities around 
specific issues of their interest, the impact is even greater [21]. From other angles, 
social media can also be employed to identify and address health disparities among 
populations. Public health practitioners looking at social network data like that may 
be able to target individuals who are at a greater risk for certain illnesses and deliver 
disease prevention programs specifically to them [22]. By this means, the availability 
of such resources and interventions is ensured to be on the most appropriate popula-
tions [15]. Along with their capabilities to communicate information, provide social 
support, influence health behaviors, enhance health promotion programs, and elimi-
nate health disparities, social networks play a critical role in the field of public health 
[10, 15, 20, 21]. Figure 9.1 highlights the information network flow in communities 
during pandemic.

Figure 9.1 reveals that by strengthening social ties, social networks are essential 
for pandemic preparedness and mitigation. They remove barriers to communica-
tion and foster timely and credible distribution of information which is important 
in enhancing the public’s trust in health strategies and curtailing false assertions. 
This confidence decreases both the spread and effect by encouraging compliance 
with health behavior guidelines. Moreover, networks of social support also provide 
psychological and emotional assistance to individuals to help control stress levels 
and decrease feelings of disintegration as well as of integration within the com-
munity. This support is helpful in enhancing pandemic preparedness and response 
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by improving community’s resilience. Additionally, effective acting to prospecting 
and deploying resources internally to an organization through a social network is 
assured. Looking at each of these factors it becomes clear why networks are so valu-
able in managing and reducing the effects of a pandemic and particularly in support-
ing central regions of heavily populated countries.

9.2 � SIGNIFICANCE OF THE STUDY

The research topic “Connected Communities: The Role of Social Networks in 
Pandemic Preparedness and Mitigation” is importantly quite significant because it 
addresses the issue of how social networks may help in pandemic preparedness. They 
enable instantaneous transmission of information to millions through social media 
on critical health issues when several media channels could take too long to convey 
the message. They can be employed during a pandemic to instantly inform millions 
of people about important health information, measures, and schedules of vaccina-
tions. Apart from educating the public, it may help alleviate panic and confusion. 

FIGURE 9.1  Information network flow process in communities during pandemic. Source: 
Framed by the authors on the basis of thorough analysis of the literature available on the topic.
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Interpersonal interaction can also be facilitated by public health professionals to the 
communities to enhance interactions and answer any questions. Community leaders 
play an essential role in passing information to and from the health providers and 
the society, maximizing the effectiveness of the messages, as well as addressing 
the needs of the community. Apart from the family, they also help in fostering the 
probability of developing and cooperating in rivalry by following the health rules 
and consensus in the networks. Furthermore, there has to be the intervention of the 
government so as to be able to promote public health on social platforms, imple-
ment the policies, and provide accurate information. In order for the public to access 
appropriate information, governments may cooperate with social media companies 
to regulate and control free speech and refute fake news. Social media services have 
become a significant player in the battle against wrong propaganda, which is very 
common in times of public health crises and whose consequences can be serious. 
Understanding and leveraging the power of social networks will help policymakers 
and health agencies improve the efficacy features, inclusivity, and effectiveness of 
pandemic response measures. This chapter exposes how social networks bolster the 
participation and integration of families, government, and community leaders thus 
enabling effective planning of public health concerns to avert potential disasters and 
speed up recovery in the occurrence of epidemics, hence saving lives while reducing 
the adverse effects on societies.

9.3 � OBJECTIVES

	 1.	To investigate the role of social networks in promoting public health.
	 2.	To assess how social networks help in mitigating the crisis of the pandemic.

9.4 � METHODS

A secondary data analysis approach was employed in this study to explore the con-
tribution of social networks to preparedness and response in the case of public health 
outbreaks. Relevant databases that were identified and chosen at the commencement 
of the study included PubMed, Web of Science, Google Scholar, and Scopus, owing 
to their vast evidence base and informative materials such as publications and reports. 
These databases were searched mostly with the terms “social networks,” “pandemic 
preparedness,” and “mitigation strategies.” The scope of the search was also wid-
ened by adding additional terms such as “public health,” “community resilience,” 
“Covid-19,” and “infectious disease management.” A systematic review method was 
used to make certain the breadth and significance of the material found. Primary, 
an inclusive investigation was conducted crossways all databases by means of the 
chosen keywords. Further, Boolean operators (AND, OR) were used to further filter 
the searches, and results were filtered using language (English), publication date 
(last ten years), and document type (peer-reviewed papers, reviews, and policy docu-
ments) were used to further filter the results. Once nearly all of the pertinent sources 
were found, systematic abstracting and title searches were done to identify studies 
that exclusively addressed social networks in the context of health issues related to 
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pandemic preparedness and mitigation. Following the recognition of pertinent pub-
lications, a full-text assessment was conducted to make certain that the research met 
the inclusion criteria, which included a focus on the role of social networks in public 
health emergencies, namely, pandemics. Some studies that did not fall within these 
parameters were excluded from the analysis, for instance, materials that were not 
published in English or materials that did not focus on social media or that were not 
on the preparedness for the pandemic were ignored. During data extraction, relevant 
information of every one of the chosen studies was recorded. Such aspects included 
the aims of the study, methodologies employed, authorship, year of publication, jour-
nal of publication, source of the study, social networks, and pandemic preparedness/
mitigation aspects along with the findings and conclusions drawn from these aspects. 
The synthesized data was analyzed thematically. The communication, information 
dissemination, community engagement, and behavior change strategies in the social 
media cases were collated and analyzed to provide a better understanding of the role 
of social media in reinforcing communities and response strategies to pandemics. It 
also required synthesizing the results of different studies. A detailed summary of the 
results of the systematic search strategy and a flow chart (Figure 9.2) illustrating the 
article selection process are mentioned below.

A total of 1,500 articles were retrieved from four databases. After screening titles 
and abstracts, 400 articles were deemed relevant. A full-text review narrowed this 
down to 150 articles, which included 100 original research articles and 50 reviews/
policy documents. These selected articles were then used for the thematic analysis 
to understand the role of social networks in pandemic preparedness and mitigation. 
This systematic and thorough approach ensures that the selected literature compre-
hensively covers the research topic, providing a solid foundation for understanding 
the impact of social networks on public health emergencies.

FIGURE 9.2  Selection of articles.
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9.5 � THEMATIC ANALYSIS

The role of social networks in the context of serving to prepare for and mitigate a 
pandemic remains a subject of great scholarly interest. The objective of this thematic 
analysis is to present the main conclusions from 150 research articles in order to 
analyze the impact of social networks on the response of the public to pandem-
ics. The general themes available in the selected literature relevant to the research, 
for instance, Community Engagement through Use of Social, Dissemination of 
Misinformation, Communication for Public Health, Role of Influencers, and Policy 
Implication, have been utilized in this investigation. Themes that emerged from the 
selected research papers are discussed in a detailed manner below.

9.5.1 �T heme: Community Engagement through Use of Social Networks

A common theme among the studies assessing the level of preparedness or mitiga-
tion strategies for the pandemic is Community Engagement through Use of Social 
Networks. During pandemics, social networks’ power to communicate adequately 
and mobilize the whole community is vital for health interventions. The behavior of 
social networks in health emergencies has a functional ability to provide and consoli-
date great numbers of people within short notice [23]. As Garcia and Lee [23] argue, 
social networks in terms of reach and connectedness are critical in information dis-
tribution, especially during pandemics which is why they are so important for com-
munity mobilization. Public health organizations can provide regular or important 
updates, health warnings, or safety guidelines via social networks such as Facebook, 
X, and Instagram. It is especially useful in periods of pandemics when timely up-
to-date information can assist in the conduct of the public’s behavior to a better state 
of health. For example, various social media were used to provide information on 
vaccination: efforts, strategies and transmission of Covid-19. This real-time interac-
tion played a major role in the pandemic response in terms of managing the public’s 
understanding of and compliance with health norms [23]. Figure 9.3 as mentioned 
below highlights how various social institutions function during pandemic.

The picture provided outlines a community social structure in relation to epi-
demic prevention and management stressing the interrelated roles of certain key 
components. Central to this structure of social network is the Health authority 
whose responsibilities include formulation and distribution of relevant health mes-
sages. In between the two sides are community leaders who are essential in gaining 
confidence in the community and act as important communication links between 
the community and health authorities. One of the essential components of a health 
network is local hospitals since they are providers of critical healthcare services 
and information to the population. Social media marketing Figueroa is one of the 
efficient tools for communicating the message and raising interest among society 
since it utilizes the popularity of Facebook, Instagram, and other social networks. 
As the information’s target group, the people need to adhere to the stated measures in 
order to mitigate the potential impacts of the pandemic. The news channels prevent 
the loss of a huge audience as they present facts and issues in a short period of time. 
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The wish of research institutions is to assist in changing the practice of healthcare 
by providing scientific information and research that is related to health. Such orga-
nizational structures operate at the grassroots level, provide support for designed 
public health initiatives, and ensure that local needs are addressed. Adherence to 
health guidelines is best enforced by families due to their capacity to spread within 
their network. Lastly, the government remains active in promoting health issues on 
social media as well as other platforms and implements the health rules, acting in 
this case, as the right source of information. This type of network also showcases 
how public health can be managed during a pandemic in terms of teamwork and 
every element’s importance to maintaining the resilience and general health of the 
community. The focus of the research undertaken by Lopez and Miller [24] was to 
study the role of social networks in enhancing community resilience. A sense of 
belonging to a group and thereby creating support networks, as well as enabling 
activity sharing, contributes to the gaining and keeping of community resilience 
through these platforms [24]. Social networks facilitate information sharing across 
exactly these elements and therefore, can help the exchanged networks, encourage 
one another, and plan ways of responding to health challenges in their societies. 
Social media was especially efficient in uniting communities amid health crises such 
as the Ebola virus outbreak in West Africa. With these tools, health organizations 

FIGURE 9.3  Connected social institutions during pandemic. Source: Framed by the authors 
on the basis of critical analysis of the literature available on social institutions and pandemic.
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were able to steadily inform populations of the symptoms, possible therapies, and 
prevention methods, thus inhibiting unnecessary virus transfer and empowering the 
population to stay healthy [24]. Good reasons exist for the use of social media for 
purposes of community mobilization and a few examples from the literature suffice 
in this regard. During the H1N1 pandemic, the public health community turned to 
social media for methodical announcements about the flu virus. The technique pro-
moted active participation and continuous information flow that led to a reduction in 
panic and misinformation [23, 24]. Another case in this regard is that of the outbreak 
of Zika virus and how the internet, especially social networks, helped in educating 
the masses about mosquito control and its preventative measures. Public health cam-
paigns utilized social media platforms to educate the public on healthy behaviors 
and how to prevent more people from contracting the virus.

9.5.2 �T heme: Misinformation Dissemination

Another key area of focus within the literature on preparedness and response to 
the pandemic is the use of social media to share fake or distorted information. 
The public health efforts to promote health behavior change can be undermined by 
false information which creates problems such vaccine hesitance tendencies and 
adherence issues to health advice [25]. With the great audience and speed of social 
media, it becomes feasible for inaccurate information to reach large groups making 
it harder for public health measures. Many studies show that wrong information 
makes an adverse impact on the health of people in general. Zhao and Chen [25] 
also commented on the wave of false trends that surged on social networks regard-
ing the unfounded safety and efficacy claims about vaccines during the Covid-19 
pandemic which eventually influenced increased vaccine hesitancy. This disinfor-
mation finally contributed to a prolonged state of the pandemic due to significant 
delays in the realization of the wide-ranging vaccination campaign [25]. Lee and 
Park [26] similarly investigated the effects of misinformation on health guideline 
compliance. They found that widespread disregard of public health’s instructions 
such as wearing a mask or keeping social distance was fueled by wrong beliefs 
about how the disease spreads and how it could be prevented [26]. This noncom-
pliance complicated the public health emergency because it impeded the efforts 
to contain the disease [26]. Owing to their broad and speedy spread, these social 
networking sites have been acknowledged as important agents in the spread of dis-
information. These sites support the fast and untrustworthy exchange of misleading 
or incorrect information by making it easy for users to share material in times of 
need usually on a high frequency without checks [25]. As per Lee and Park [26], 
the algorithms engaged by social media sites often give the material a superior 
priority than exactness based on engagement, which exacerbates the propagation 
of bogus information. During the Covid-19 plague and such, many false informa-
tion about the virus what it entails, where it came from, and how it can be cured 
circulated over social media. In addition to this, Spanish flu’s viral propagation has 
given rise to various other theories, for instance about the virus’s applications as a 
bioweapon or even the fictitious information around clinical trials for drugs such as 
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hydroxychloroquine, which also became prevalent on social networks [25]. These 
false narratives not only misled the citizens but also diverted attention from fact-
based public health approaches. As Lee and Park [26] highlight, in order to stop the 
spread of misinformation, social media players and public health stakeholders need 
to work together. One possible outcome of this collaboration is to develop systems 
that prioritize likely truth and the use of fact-checking services for detection and 
rebuttal of false information [26].

9.5.3 �T heme: Communication for Public Health

The referred articles explain the social networks use for health communication 
thoroughly. One major advantage of the use of social networks during pandemic 
situations is the speed and efficiency with which public health information dis-
seminates to the people, thus affecting the overall public health. This ability for 
rapid dissemination however guarantees a wide coverage of health information, 
thus a quick response with the relevant health measures [27]. Johnson and Brown 
[27] focused on the role of social networks in delivering health communication 
especially in cases of pandemics. They pointed out that social networks such as 
Facebook, Instagram, and X are good sources of up-to-date information on how 
the virus is transmitted, preventive measures in place, and treatments available. For 
health policies to be adhered to, the public needs to be kept updated and so engaged 
and this takes a certain speed of reporting [27]. In addition, Harris and Johnson [28] 
also focused on the role of social networks in the implementation of health-enhanc-
ing behaviors. The researchers found that social networks could also help promote 
behaviors such as wearing masks, hand washing, and keeping distance by spreading 
interesting content along with health messages based on facts [27]. The role of such 
services is to consider offering some form of correction to any disinformation that 
might be availed on these products [27]. On the other hand, social networks provide 
a unique ability to reach various populations, including hard reaching populations. 
In the opinion of Johnson and Brown [27], social networks are especially effec-
tive in reaching teenagers and those in the young adult age group who are more 
users of these platforms for information. Health practitioners emphasize that this 
demographic reach ensures that important health promotion campaigns are effec-
tive and reach the intended target populations, hence bridging information gaps 
and health disparities. Harris and Johnson [28], on the other hand, delved into how 
“target” messaging is helpful in disseminating information to discrete groups such 
as the elderly or the lesser mass media accessible communities. Health authori-
ties will assume that through targeting with the appropriate language and content, 
communication, the different aspects of society will be understood and reached 
[27]. Social networks also enhance community engagement by enabling commu-
nication between the public and the public health agencies in a more effective way. 
Interactive elements such as real-time Q&A sessions, survey options, and feedback 
choices give the public a forum to ask questions and get answers from govern-
ment representatives in real time. This interaction encourages people to adhere to 
health-related behavior and develop faith, as suggested by Johnson and Brown [27]. 
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Moreover, social networks can act as an avenue for public health as highlighted by 
Harris and Johnson [28]. Harris and Johnson [28] have revealed that user-associated 
content in the form of peer support and testimonials are valuable in promoting 
behavior and nurturing community in a pandemic situation. These community-
based programs can educate the population regarding health issues and promote a 
culture that is more tolerant toward change in behavior [27].

9.5.4 �T heme: Role of Influencers

Public health seeks to get audience participation by using different strategies and 
one of them revolves around whose voice is important that is, studying the role 
of influencers during the time of crises such as pandemics. The use of influenc-
ers especially social media influencers has been acknowledged to have a great 
effect on health outcomes during pandemics. Their duties include not only giving 
accurate information but also promoting healthy practices and combating incor-
rect information [29]. Activists who have a sufficiently large audience and are 
active on social networks tend to be good informants and information distribu-
tors. Influencers can act as a media outlet during pandemics and fast share health 
messages, information, and directives released by agencies like the World Health 
Organization (WHO) or the Centers for Disease Control and Prevention (CDC) as 
noted by Smith and Johnson [29]. Health campaigns are more successful in reach-
ing followers as they tend to trust the information that is given by an influencer, 
thus extending the campaign’s effectiveness. Further, influencers help in incorpo-
rating healthy practices. Influencers may set examples and encourage positive hab-
its of hand hygiene, use of masks, and social distancing [30]. Such mundane acts 
help reconstruct the behavioral norms which taboo these activities as non-conven-
tional, especially for young populations who are at risk of this effect due to their 
inclination toward social media stars [30]. Influencers can also be of great help 
in tackling the great challenge constraint of people spreading untrue information 
toward societies from time to time during the pandemics. Smith and Johnson [29] 
argue that influencers act as fact-checkers by correcting misleading information 
and sources often found on social media. Influencers are responsible for ensuring 
that people have the right information and supporting decision-making processes 
through engaging audiences with the right context [29]. Nguyen and Williams [30] 
highlight that influencers can effectively encourage their fans to receive vacci-
nations, if they share their vaccination experiences and correct misinformation 
surrounding vaccination. This is important in instilling vaccine confidence which 
is key to increasing vaccine uptake among populations [30]. Influencers have a 
unique ability to reach even the most marginalized populations, which regular 
public health interventions would have failed to address. In their work, Smith and 
Johnson [29] noted that these influencers have a good understanding of the prefer-
ences and problems of the audience that is why they are able to alter the nature 
of the messages sent out. This type of focused communication ensures that public 
health messages are appropriate, possible, and relevant to various sections of the 
population [29].
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9.5.5 �T heme: Policy Implications

Framing appropriate policy during the time of pandemic is very essential. Proper 
policies can alleviate the suffering of the people to a large extent. Figure 9.4 as men-
tioned below highlights how public health policy framed by the government works 
at the time of the pandemic.

Figure 9.4 reveals how the framed policy works on the ground during the time 
of the pandemic. Certain public health policies have wide-reaching effects, if social 
networks are used in health programs. This is especially true as far as readiness 
for and response to disasters such as pandemics is concerned. Social media can 
enhance the ability to engage communities, correct misperceptions and facilitate 
health communication. Lawmakers should consider this. Addressing those partic-
ular questions would increase the effectiveness of public health measures during 
the pandemics [22, 23]. One major policy implication is the institutionalization of 
social networks’ involvement in public health communication planning processes 
and activities. Social networks enhance health communication, especially in provid-
ing fast and accurate information dissemination of health workers and their essential 
role in a health crisis that encompasses natural disasters. In order to ensure that 
the public receives information that is correct and to the point within the shortest 
time possible, the governing authorities should formulate policies guiding the use of 
social media sites [23]. In addition to that, public health institutions should also sup-
port capacity development programs aimed at enhancing the communication team’s 

FIGURE 9.4  Policy implications flow chart. Source: Framed by the authors on the basis of 
research results.
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digital skills. It is also believed that public health professionals would be able to 
actively and adequately communicate with members of the public on various social 
media sites with these programs [22]. Through bettering one’s literacy, public health 
organizations are able to provide relevant information clearly to the intended target 
audience and all interested members [22]. Improving community participation with 
social networks should be another area for policy emphasis. There is synergy in 
social networks as public health organizations are able to relate with communities 
addressing their issues and creating goodwill [23]. As Garcia and Lee [23] state, the 
use of social media should be recommended by political agents as a way to organize 
people for social movements, particularly when such needs to be done with respect to 
the information on vaccination services and preventive measures. Lopez and Miller 
[24] argue that such policies should promote social networking for the purpose of 
supporting health programs that are community based. Community members as well 
as health officers can formulate a plan and organize activities to provide health mes-
sages to the community. Such collaborations can enhance the effectiveness and cov-
erage of health promotion programs [22]. Unfortunately, the unregulated spread of 
fake news through social networks has been a significant drawback in the attempts 
to enforce public health policies. A number of strategies must be developed in order 
to reach the above goals so that the public does not receive information that is mis-
leading [25]. For example, these approaches may involve partnerships with social 
media companies to identify and eliminate false information, or they may consist 
of campaigns to raise the public’s understanding of the internet [25]. Regarding the 
importance of real-time systems that correct disinformation quickly, remarked on 
the need for improvement of these technologies. It should be noted that these great 
efforts must be made in the development and integration of these services into social 
media platforms by policy. It is also important for public health organizations to har-
ness the influence and trust of community members and other reliable figures in the 
campaigns to counter myths and provide the people with the right information [29]. 
To ensure that all members of society are offered positive health information of high 
quality through networks, there is also a need for policies addressing the inequalities 
in digital technologies. Harris and Johnson [28] argue that some demographics in 
particular, the elderly and residents of low-income areas may not have such access 
to digital resources as others. Therefore, it is recommended that policy proponents 
make provision for resources targeting efforts to increase the ICT literacy and access 
levels of the vulnerable subgroups of the population [30]. Some measures to mini-
mize the digital divide may include distributing electronic devices among people and 
establishing cheap internet services, as well as helping them learn how to use social 
media. Policymakers can promote health equity and improve public health by ensur-
ing that all sections of society have access to and benefit from digital health com-
munication [28]. Tempo is a very important aspect within the ethics of public health 
practice that relates to the timing of any social media strategies. Accountability is 
important, one way in which it is practiced is in campaigns involving influencers 
and social media. In order to maintain public trust, such policies should require the 
clear mention of all kinds of engagement or sponsorship [30]. There is also a need to 
formulate ethical policies pertaining to the participant’s privacy and their health data 
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in public health campaigns on social media. In such cases, it is essential to uphold 
the public credence that is associated with such projects by ensuring that all ethical 
measures regarding data collection and use are adhered to.

9.6 � DISCUSSION

Despite the importance of each of these themes, the analysis of the literature selected 
for this study sheds light on the importance of social networks in preparedness and 
response to pandemics. First and foremost, one vital thing that sticks out is social 
network-based community mobilization. Due to social media platforms, people are 
able to have quick access to important health education. When essential and reli-
able information spreads at an exponential rate, it leads to improved health status 
of the population. Garcia and Lee [23] state that Facebook, Twitter, Instagram, and 
other social media platforms were actively used to communicate information regard-
ing vaccinations, prevention, and the transmission of the virus during the Covid-19 
pandemic. This information was very essential bearing a significant weight among 
public users leading to increased compliance toward health measures. In addition, 
social networks help to promote and encourage collective action by providing sup-
port networks and a sense of belonging to a community which increases commu-
nity resilience. Lopez and Miller [24] demonstrated that health emergencies, the 
Ebola outbreak in particular, attracted and solicited social network resources, thus 
containing the spread of the virus and strengthening the communities in which it 
emerged. Further, evidence particularly from case studies of the Zika virus outbreak 
and H1N1 pandemic, supports how social media can be used as an effective tool for 
managing public awareness and mobilizing communities. On the other hand, it is 
worrisome to actively promote through social media is the problem of promoting 
misinformation. It is well documented that misinformation poses risks to health proj-
ects by creating vaccine hesitance and non-compliance to health treatment. Based on 
Zhao and Chen [25] and Lee and Park [26] vaccination safety and viral transmission 
embarrassment were a major challenge to the public health response during Covid-19 
toward prevention and control. Add to this the fact that social networks themselves 
further compound the problem by rapidly spreading misinformation due to their pri-
oritization of interaction rather than facts. Equally, these platforms have catered to 
the public health communication needs. Also, social media as a means of dissemi-
nating health information and promoting the good health practices of hand washing 
and wearing masks is equally effective according to Johnson and Brown [27] and 
Harris and Johnson [28]. The accumulative features of these platforms to capture 
the needs of a vast pool at least the young population in the context make it possible 
to disseminate essential health messages, address knowledge barriers, and promote 
health equity. Influencers play an important role even in pandemic communication 
using their large number of subscribers to disseminate relevant information, promote 
health behavior, and dispel misinformation. Finally, they help fasten the normaliza-
tion of creating the bulwark and raising the chances of getting vaccinated among 
the youth who are easily influenced by social media idols [29, 30]. Last but not the 
least, there are important policy implications when social networks are incorporated 
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into public health campaigns. Authorities have to adopt multicentric strategies to 
address disinformation, increase the level of the population’s health professional’s 
digital competence, and diversify the ways of communication with the audience. As 
an example, to ensure equal access to accurate health information for all popula-
tions, it is necessary to eliminate information inequality. Adhering to ethical aspects 
of health information issues such as openness and privacy of the information to the 
people concerned is paramount in restoring the civilians’ faith in the digital health 
movement.

9.7 � CONCLUSION

As noted above, social networks are considered with both opportunities and threats 
in the field of preparedness and response to any potential or actual pandemic. Recent 
pandemics have shown that their ability to disseminate information and mobilize 
communities in a short time frame is an asset in the health sector. However, there 
are many challenges in fighting these public health initiatives, since these channels 
allow for the mass spread of false information. Therefore, there is a need for social 
policy to protect the health of the public by also addressing the underlying factors 
of community organization and communication in social networks. That is why 
in order for social networks to be applied successfully and effectively in public 
health emergencies in the future, it will be necessary to adhere to ethical standard 
codes and ensure universal availability of digital means. When social networks 
are engaged for purposes of bringing together communities, they can significantly 
enhance preparation and response to pandemics which eventually is for the good 
of everyone.
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Identifying Spread 
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Overlapping Community 
Detection for Pandemic 
Management
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10.1 � INTRODUCTION

Pandemics have historically caused widespread disruption across the globe. In 
many instances, outbreaks progress in waves, with the disease spreading exponen-
tially among populations primarily through social interactions. Governments often 
respond by implementing strict social distancing measures and lockdowns to curb 
the spread and aim to flatten the infection curve. While effective, complete lock-
downs are challenging to sustain due to their profound negative impact on econo-
mies and the social and mental well-being of communities. An alternative approach 
involves minimizing the spread of contagion during its early stages, specifically 
before community transmission becomes widespread. This can be achieved by iden-
tifying and targeting the most influential spreaders, or spread blockers, within the 
social network of the population. These individuals can be subjected to interven-
tions such as testing, quarantine, restricted socialization, or prioritized vaccination. 
By focusing efforts on these key nodes, the diffusion dynamics of the contagion can 
be significantly curtailed, reducing its overall spread. The number of spread block-
ers, i.e., k can range from a few to a small subset of the entire population depending 
upon the degree of precaution that a government wants to take before it is com-
pelled to issue a complete lockdown advisory. The spread blockers thus identified 
can further be used to design and prioritize vaccination strategies in countries with 
high population and relatively less access to vaccines. This can be helpful in creat-
ing more effective vaccination drives in terms of minimizing the risks of consecu-
tive infection waves that wreak havoc across communities. Identifying influential 
nodes from social networks has been a long-standing and challenging task with 
numerous methods based on different approaches being proposed in the literature. 
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Most commonly, nodes are ranked based on some network node-centrality mea-
sure and the top-k ranked nodes based on the centrality measure are taken as most 
influential. However, calculating global centrality measures like the betweenness 
centrality is computationally exhaustive and requires the complete network to be in 
memory. This renders most of the existing influential-node detection methods based 
on centrality measures inapplicable to very large-scale social networks. One of the 
inherent characteristics of real-world social networks is the existence of communi-
ties in their underlying structure. Communities in a social network represent nodes 
that are connected more within the community in terms of similarity, interaction 
(physical or virtual), function, ideas, proximity, and so on than across the commu-
nity. Community detection focuses on identifying densely connected groups within 
social networks, which are significant as they often represent functional units within 
a networked system. This area of research has garnered considerable attention in 
recent years and continues to evolve rapidly. A key challenge in community detec-
tion is addressing overlapping communities, where a single node in the network 
belongs to multiple communities simultaneously. Nodes at which communities 
overlap represent structural holes (Lou and Tang 2013) which indicate the scarcity 
of connections across communities at that point in the network. In information dif-
fusion theory, nodes that occupy structural holes have higher influential power in 
the network (Katona, Zubcsek and Sarvary 2011). Traditional methods for overlap-
ping community detection often face scalability challenges in large-scale social 
networks due to their reliance on global network metrics. Building on earlier work 
by Bhat and Abulaish (2013) which emphasized the importance of their overlapping 
community detection method (Bhat and Abulaish, 2012) for identifying influen-
tial nodes, the authors later introduced a distributed version of this algorithm in 
Muhammad, Majid, and Bhat (2020). This paper highlights the significance of the 
overlapping community detection approach proposed in Muhammad, Majid, and 
Bhat (2020) for identifying spread blockers in social networks. The performance 
of the proposed method is evaluated and compared against other state-of-the-art 
overlapping community detection methods in the literature. The significance of 
overlapping nodes, detected by various overlapping community detection meth-
ods, as spread blockers is verified by comparing their degree of overlap with their 
betweenness centrality score. Since the betweenness centrality score of nodes is 
often used to rank nodes in a network for influence, if the degree of overlap for a 
node positively correlates with betweenness centrality then an overlapping com-
munity detection method can simply be used to identify spread blockers in a social 
network. The chapter is organized as follows: Section 10.2 presents the related work 
on influential node detection and overlapping community detection. Section 10.3 
involves hypothesis testing and insights wherein the degree of overlap of a node as 
identified by the method presented in (Muhammad, Majid and Bhat 2020) is com-
pared with the nodes’ betweenness centrality. Section 10.4 presents the significance 
of the proposed approach to identify spread blockers by measuring the network split 
(in terms of connected components) after removing the detected influential nodes. 
Finally, Section 10.5 concludes the chapter.
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10.2 � RELATED WORK

Traditionally, influential node detection and influence maximization problems 
have been studied mainly under two categories, namely centrality measure-based 
approaches (Zhang, et al. 2019) and greedy approaches (Khomami, et al. 2021). In 
the centrality-based approaches, tradeoffs have been followed to balance computa-
tional overheads, scalability, and accuracy by incorporating either local measures 
like the degree centrality or global measures like betweenness centrality. In the 
greedy approach, various diffusion models like the SIR, Threshold, and Independent 
Cascade models have been used to find and rank the best spreaders after each diffu-
sion iteration through the network. However, these approaches are computationally 
exhaustive and have poor scalability. One of the important structural features of real-
world social networks is the existence of communities in the underlying structure. In 
the context of influential node detection, many researchers have presented the sig-
nificance of community structures for the task of influence maximization. Katona, 
Zubcsek, and Sarvary (2011) analyzed an OSN dataset and found that dense groups 
or communities promote higher rates of word-of-mouth influence, with influencers 
occupying structural holes in the network exhibiting, on average, greater influen-
tial power. Similarly, the empirical analysis by Lerman, Ghosh, and Surachawala 
(2012) on various online social networking platforms underscores the importance of 
community structures in viral marketing, noting that dense community structures in 
social networks lead to a lower epidemic threshold. Hinz et al. (2011) further dem-
onstrated that seeding hubs (nodes with high degrees) for viral marketing generates 
a higher number of referrals, as hubs play a more active role in the diffusion process 
due to their extensive connectivity. The community analysis of influential nodes in 
a social network by Kimura et al. (2008) highlights that based on the correlation, a 
modularity-based graph partitioning algorithm is an alternative to the greedy method 
(Kempe, Kleinberg and Tardos 2003) for detection of influential nodes in a social 
network. The analysis of Galstyan, Musoyan, and Cohen (2009) based on finding the 
largest cascades using a threshold model suggested that the selection of influential 
nodes can be limited to a small community within the community structure of the 
underlying network. The work of Wang et al. (2010) is a bit different in the sense that 
after a community structure is identified, the kth influential node is selected from a 
community that yields the largest increase of influence degree among all communi-
ties. Here the influence degree is measured in terms of the diffusion process modeled 
using the independent cascade model. Bhat and Abulaish (2013) have also presented 
empirical evidence that the overlapping community detection algorithm proposed in 
Bhat and Abulaish (2012) generates overlapping nodes that are potential influential 
nodes for viral marketing. Building on these findings, numerous techniques for influ-
ential node detection and influence maximization based on community structures 
have been proposed in the literature. Zhang et al. (2013) argue that the influential 
nodes detected by traditional methods based on measures like degree centrality may 
all lie in the same underlying larger community and thus only influence nodes lying 
in that single community. They propose a k-medoid-based graph partitioning method 
to ensure that the k-influential nodes are taken from k different communities. Gupta, 
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Singh, and Cherifi (2016) argue that global information related to a network may be 
unavailable or impractical to use (e.g., in the case of very large-scale networks) and 
thus suggest that local centrality measures should be used for influential node detec-
tion. They propose a new local centrality measure for nodes based on the position 
(hubs and bridges) of a node in the underlying community structure of the network. 
However, we argue that global metrics are better indicators of influence across the 
network and should be preferable in cases where the dynamics of epidemics are 
studied. Moreover, alternative scalable metrics to that of global centrality measures 
should also be identified and evaluated. Zhao, Li, and Jin (2016) model the influen-
tial node detection as the identification of core nodes from within the underlying 
communities of the social network. The core node identification is based on a label 
propagation mechanism which is restricted within a community. Further, their work 
is based on the assumption of Xiangwei et al. (2009) that diffusion across communi-
ties is not possible which according to our understanding overlooks the significance 
of structural holes, bridges, and overlapping nodes in a network reported in the lit-
erature and is thus flawed. Pozveh, Zamanifar, and Nilchi (2017) use the underly-
ing community structure of a social network to propose community-based closeness 
measures to rank the nodes. These closeness measures, categorized as active and 
blocked, are calculated using the neighborhoods of nodes and their community affil-
iations. Tulu, Hou, and Younas (2018) base their approach on the works of Zhao et 
al. (2014) and Zhao et al. (2015) which map the importance of a node in the network 
to the number of communities to which the node is linked to in the underlying com-
munity structure. Several community-based approaches for influential node detec-
tion have been proposed in the literature. Tulu, Hou, and Younas (2018) measure 
a node's influence based on the entropy of random walks from the node to vari-
ous communities within the network. Zhang et al. (2019) introduce the Community 
k-Shell Influence (CKI), which ranks nodes according to the number of nodes with 
a degree greater than k to which they are connected within their community. Zhao 
et al. (2020) use the Blondel community detection method (Blondel, et al. 2008) to 
identify community structures and propose a community-based centrality measure 
for ranking nodes. This measure considers a node’s influence based on the strength 
of its local community and the neighboring communities it connects to, with com-
munity influence determined by size and the closeness of inter-community nodes. 
Khomami et al. (2021) select k influential nodes, one from each of the k largest com-
munities, by evaluating a node’s centrality and degree within its community. Zhang, 
Li, and Gan (2021) inspired by the theory of the strength of weak ties, emphasize 
the role of structural holes—sparse connections between communities—in influence 
spread. They identify boundary nodes as structural holes, rank them based on their 
influence spread, and use these rankings to select influential nodes. Despite their 
diverse methodologies, these strategies face notable challenges in their application 
and effectiveness, as outlined below:

	 1.	All these studies consider that the underlying community structure of the 
network is distinct, i.e., non-overlapping. However, it is a well-established 
theory that real-world social networks exhibit overlapping community 



210 Community Structure Analysis from Social Networks

structures wherein a node may belong to multiple communities. Moreover, 
it is these overlapping nodes that better suit the role of structural holes and 
thus as spreaders. Ghalmane et al. (2019) present an approach that utilizes 
overlapping communities for influential node detection; however, it is faced 
with the following issues.

	 2.	Most of these methods lack a clear justification for the choice of the com-
munity detection algorithm employed and often imply that any community 
detection method is suitable for the task. However, different community 
detection methods often use different definitions of communities and the 
results often vary. Moreover, most of the community detection methods 
do not take into consideration the weighted and directed nature of social 
networks that might provide more insights to the diffusion behavior.

	 3.	Another major issue related to these studies is that they are applicable to 
small networks as many community detection methods proposed in the 
literature use some kind of a global metric like modularity and are thus 
not scalable to very large-scale networks, typically against large human 
proximity networks which are important for studying contagion based 
epidemics.

To address these challenges, this chapter proposes a novel study aimed at highlight-
ing the significance of various state-of-the-art overlapping community detection 
methods for identifying influential nodes (spread blockers) from social networks.

10.3 � TESTING OF THE HYPOTHESIS

The main objective of this chapter is to present an alternative for the global centrality 
measure namely betweenness centrality. Being a global measure, betweenness cen-
trality is computationally exhaustive and thus not scalable to large-scale networks. 
We argue that from the overlapping community structure of a network, the commu-
nity memberships of nodes can be used as a good indicator for selecting influential 
nodes. We hypothesize that the greater the number of communities a node belongs 
to, the more significant it is as a seed (influential node or spread blocker), as such 
nodes are likely to facilitate the diffusion of infections across multiple groups within 
a social network. To test this hypothesis, we examine the relationship between nodes' 
community memberships and their corresponding betweenness centralities. For our 
experiments, we utilize the distributed overlapping community detection method 
proposed by Muhammad, Majid, and Bhat (2020) alongside six other state-of-the-art 
overlapping community detection methods summarized in Table 10.1.

The overlapping community detection methods are applied to three social net-
work datasets to extract overlapping community structures. The list of datasets is 
summarized in Table 10.2.

The community structure detected by each of the methods is then analyzed to 
reflect the relation of the community membership count of nodes for each of these 
methods with the betweenness centrality of these nodes. Since the overlapping com-
munity membership count of different community detection methods for the same set 
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of nodes belonging to a network varies, we divide the overlapping membership count 
(assigned by a community detection method to nodes) into bins containing fractions 
of the highest membership assigned by a method to any node in the underlying net-
work. The bin width is set to 0.1, i.e., 10% of the highest overlapping membership. To 
highlight the relationship between the overlapping membership of a node (assigned 
by a community detection method) and its betweenness centrality, we extract the 
top 1% and 2% nodes according to their decreasing betweenness centrality and plot 
the confidence of an overlapping node bin to appear in the top 1% and 2% fraction 
of influential nodes according to their betweenness centrality. The confidence of an 
overlapping bin to appear in the top fraction is calculated as shown in equation 1. 
In simple terms, the confidence score [between 0 and 1] of an overlapping bin for 
a community detection method is the fraction of nodes assigned to an overlapping 
bin that appears in the top 1% and 2% influential fraction in terms of betweenness 
centrality. Along these lines, the results highlighting the relationship of overlapping 
node memberships and betweenness centrality using different overlapping commu-
nity detection methods and datasets are shown in Figures 10.1, 10.2, and 10.3. Figure 
10.1 shows results for the Facebook dataset wherein Figure 10.1a uses the top 1% 
nodes and Figure 10.1b uses the top 2% nodes according to the betweenness central-
ity. The method CFinder did not generate any results for this dataset due to the high 

TABLE 10.1
Overlapping Community Detection Methods Used
Method and Source Approach Used Scalability

HOCTracker (Muhammad, Majid 
and Bhat 2020)

Density-based 
clustering

Distributed implementation using 
MapReduce

CFinder (Palla, et al. 2005) k-Clique percolation Not scalable

AFOCS (Greene, Doyle, and 
Cunningham 2010)

Louvains local search 
heuristic

Not scalable

SLPA (Xie and Szymanski 2012) Label propagation Not scalable

COPRA (Gregory 2010) Label propagation Not scalable

NECTAR (Gregory 2010) Louvains local search 
heuristic

Theoretically scalable

DEMON (Coscia, et al. 2012) Label propagation Theoretically scalable

TABLE 10.2
Datasets Used

Dataset Name and Source Number of Nodes Number of Edges

Facebook (Leskovec and Mcauley, 2012) 4039 88234

Enron (Klimt and Yang, 2004) 13750 175253

Deezer (Rozemberczki and Sarkar, 2020) 28281 92752
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density of the input network and its memory requirements. It can be observed from 
Figure 10.1 that for the Facebook dataset the highly overlapping nodes bins identified 
by methods HOCTracker and AFOCS show positive relationship with betweenness 
centrality, i.e., the higher the overlapping membership of a node, the more likely 
(with confidence of 1) it belongs to the top 1% and 2% of nodes ranked based on the 
betweenness centrality. The same is not true for overlapping community detection 
methods including NECTAR, COPRA, DEMON, CFinder, and SLPA.

Figure 10.2 shows results for the Enron dataset wherein Figure 10.2(a) uses the 
top 1% nodes and Figure 10.2(b) uses the top 2% nodes according to the between-
ness centrality. It can be observed from Figure 10.2 that for the Enron dataset, only 
the methods HOCTracker and AFOCS generate overlapping node bins that have a 
relatively high betweenness centrality. The results generated by other methods for 
Enron dataset are relatively insignificant.

Figure 10.3 shows results for the Deezer dataset wherein Figure 10.3(a) uses the 
top 1% nodes and Figure 10.3(b) uses the top 2% nodes according to the betweenness 
centrality. It can be observed from Figure 10.3 that for the Deezer dataset, methods 
HOCTracker, AFOCS, and CFinder show a consistent positive relationship pattern 

FIGURE 10.1  Confidence of overlapping node bins to appear in the top fraction of between-
ness rank for Facebook Dataset. a) For top 1% of betweenness rank. b) For top 2% of between-
ness rank.

FIGURE 10.2  Confidence of overlapping node bins to appear in the top fraction of between-
ness rank for Enron Dataset. a) For top 1% of betweenness rank. b) For top 2% of betweenness 
rank.
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between the overlapping node membership bins and betweenness centrality indi-
cating high betweenness for highly overlapping node bins. On the other hand, the 
method DEMON shows an inconsistent relationship as it shows a relatively low con-
fidence for the highest overlapping node bin [0.9 − 1.0] to appear in the top between-
ness fraction. Other methods which include COPRA, NECTAR, and SLPA do not 
show any significant results for the Deezer dataset.

From the experimental results of Figures 10.1, 10.2, and 10.3, it can be argued that 
the overlapping community memberships assigned to nodes by overlapping com-
munity detection methods HOCTracker, AFOCS, and CFinder have a significant 
positive correlation with node influence measured in terms of node betweenness cen-
trality. The method DEMON shows a relatively weaker relationship and the methods 
COPRA, NECTAR, and SLPA do not show any significant relationship. Since the 
different overlapping community detection methods used in question incorporate 
different definitions of communities and use different approaches, the variation in 
the results is expected. In the given context, methods HOCTracker, AFOCS, and 
CFinder show a relatively consistent positive relationship between the overlapping 
community membership of nodes and the influence of the nodes. In light of this 
observation, we can accept the hypothesis that nodes belonging to many communi-
ties qualify as influential nodes (spread blockers) for the underlying network as long 
as methods HOCTracker, AFOCS, and CFinder are used to detect the overlapping 
communities.

10.4 � EVALUATION FOR SPREAD BLOCKING

Having accepted the hypothesis, for certain community detection methods, that 
nodes with high overlapping community memberships qualify as spread blockers, 
we now aim to present a practical picture of the usage of such spread blockers for 
reducing the spread of a pandemic. The methodology incorporates human mobility-
based proximity data, in the form of a network, that is generated by many proximity 
detections-based smartphone apps as reported in ArogyaSetu1 (accessed 15th July 

FIGURE 10.3  Confidence of overlapping node bins to appear in the top fraction of between-
ness rank for Deezer Dataset. a) For top 1% of betweenness rank. b) For top 2% of between-
ness rank.
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2021) and Roy et al. (2021). Although access to the human proximity data generated 
by such platforms is restricted, we use a similar human mobility dataset presented 
in Cho, Myers, and Leskovec (2011). The dataset comprises 6,442,890 check-ins, 
including time and location details, from the Gowalla location-based social network-
ing platform, collected between February 2009 and October 2010, in the format 
illustrated in Table 10.3.

To construct the human proximity network from this dataset, a time window 
(TW) and an exposure threshold t are selected. For instance, with a time window 
of TW = [1, Jan 2010, 7, Jan 2010] and an exposure threshold of t = 5 minutes, the 
resulting contact network includes an edge between any pair of users whose check-
in timestamps differ by no more than 5 minutes at the same location, provided the 
check-ins fall within the specified time window TW. The time window TW can be 
chosen based on the incubation period of the disease, i.e., the time it takes for an 
infected individual to exhibit symptoms. For example, COVID-19 symptoms typi-
cally appear 5 to 14 days post-infection, according to Azuma et al. (2020). The expo-
sure threshold t is adjusted according to the dynamics of the epidemic, such as the 
time a virus remains active in an infected person's environment. For COVID-19, this 
ranges from minutes (in air) to hours (on surfaces), as reported by Setti et al. (2020), 
Domingos, Marques, and Rovira (2020), Nishiura et al. (2020), and Morawska and 
Milton (2020). For illustration, we use TW = [01, Feb 2010, 14, Feb 2010] and set t 
= m72 hours, resulting in a proximity network with 8,350 nodes and 31,359 edges.

Using this human proximity network, we apply the different overlapping com-
munity detection methods to extract the best spread blocker nodes for each method 
ranked according to their overlapping community membership counts. A top k-frac-
tion of these ranked nodes (for each method) is then removed (along with their inci-
dent edges) from the network and the number of connected components resulting in 
the network is found. The idea is that the best set of spread blocker nodes for a prox-
imity network is the one that when removed from the network (analogously given a 
work-from-home advisory and/or vaccinated) results in more number of connected 
components in the network, i.e., causes the network to split into more disconnected 
components so that the transmission of an infection is reduced. This indicates that 
for an overlapping community detection method if the removal of the top k-fraction 
of spread blocker nodes from the underlying network results in more number of 
connected components in the network, the better the method performs in select-
ing the best spread blockers from the network. To generate the results, we use two 
approaches for the removal of the top k-fraction of spread blocker nodes for each 
overlapping community detection method. In the first approach, each community 

TABLE 10.3
Information Format of the Check-In Dataset

user check-in timestamp latitude longitude location id

Source: Cho et al. (2011).
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detection method in question is applied once on the network to extract the over-
lapping nodes which are then ranked according to their overlapping community 
membership count. To extract the top k-fraction of spread blockers we simply vary 
the value of k from the top 1% to 15% of the ranked nodes and plot the resulting 
number of connected components after removal of each fraction from the network. 
The results of this experiment are shown in Figure 10.4. It can be observed from 
Figure 10.4 that the method AFOCS did not generate any results for this network 
typically due to the high density of the network. Furthermore, methods HOCTracker 
and CFinder show a relatively better split (more connected components) of the net-
work upon the removal of their respective top fractions of candidate spread blockers. 
However, for higher fractions (greater than 9%) HOCTracker shows the best split. 
Other methods in question, although perform better than the random removal of 
nodes, do not perform significantly relative to HOCTracker and CFinder.

In the second approach, each community detection method in question is applied 
15 times on the network. Each time, overlapping nodes are identified and then ranked 
according to their overlapping membership count. From this ranked list of nodes, the 
top 1% of nodes are selected and then removed from the network. The resulting 
number of connected components in the network after removal of this fraction is 
recorded and the community detection algorithm is run on the resulting network to 

FIGURE 10.4  Confidence of overlapping node bins to appear in the top fraction of between-
ness rank for Deezer Dataset. a) For top 1% of betweenness rank. b) For top 2% of between-
ness rank.
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select a new top 1% of spread blockers which is then eventually also removed from 
the network and the resulting number of connected components is recorded. This 
process is repeated 15 times and each time top 1% of overlapping nodes are removed 
from the network and the number of connected components is recorded. The results 
of this experiment for each community detection algorithm in question are shown 
in Figure 10.5.

It can be observed from Figure 10.5 that the method AFOCS did not generate any 
results for this network typically due to the high density of the network. Methods 
HOCTracker and CFinder show a relatively better split (more connected compo-
nents) of the network upon the removal of their respective top fractions of candi-
date spread blockers. However, for higher fractions (greater than 10%) HOCTracker 
shows the best split. Comparing this iterative approach to the one used to generate 
results for Figure 10.4, it can be observed from Figure 10.5 that the iterative approach 
generates slightly more connected components, i.e., much better split of the network 
upon the removal of the top 1% spread blockers identified for each iteration. Other 
methods in question, although perform better than the random removal of nodes, do 
not perform significantly relative to HOCTracker and CFinder.

FIGURE 10.5  Confidence of overlapping node bins to appear in the top fraction of between-
ness rank for Deezer Dataset. a) For top 1% of betweenness rank. b) For top 2% of between-
ness rank.
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10.5 � CONCLUSION

This study provides a novel perspective on mitigating the spread of pandemics by 
leveraging overlapping community structures in social networks to identify influen-
tial nodes, termed as “spread blockers.” The analysis demonstrates a significant cor-
relation between overlapping community memberships and node influence measured 
through betweenness centrality. The HOCTracker and AFOCS methods consistently 
identify highly overlapping nodes as key influencers, supporting the hypothesis that 
nodes belonging to multiple communities are highly influential nodes and play a 
crucial role in identifying influential spreaders.

This study further evaluates overlapping community detection methods to iden-
tify optimal spread blocker nodes in a human mobility-based proximity data network 
by analyzing their effectiveness in splitting the network into disconnected compo-
nents. Nodes were ranked based on their overlapping community memberships, and 
two approaches were used: a single application approach and an iterative approach. 
The single application showed that HOCTracker and CFinder achieved better net-
work splits, with HOCTracker excelling at higher fractions of removed nodes, while 
AFOCS struggled with high-density networks. The iterative approach, which involved 
repeated node removal and re-application of the detection method, resulted in slightly 
better network splits, with HOCTracker consistently outperforming others.

In conclusion, this research underscores the importance of community mem-
berships in identifying influential spreaders and offers a computationally efficient 
framework for targeted interventions during pandemics. Future work could explore 
the integration of real-time network data and evaluate the approach across diverse 
social network structures to enhance its applicability in real-world public health 
strategies.

NOTE

	 1.	 Aarogya setu mobile app. URL https://www. mygov​.in​/aarogya​-Setu​-​app/.
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11.1 � INTRODUCTION: PLAGIARISM, ITS DETECTION

The unethical representation or use includes copying of work or expression, steal-
ing ideas, or paraphrasing without due credit which further violates the Intellectual 
Property Rights of an individual or damages the veracity of academic and inven-
tive endeavors is Plagiarism. As per some dictionaries, the etymology of the word 
Plagiarism comes from the Latin word plagiarius which means hijacker, while 
Skandalakis and Mirilas argue that the word is derived from the Greek word Plagios 
which means obliquity. Plagiarism is considered to be a cardinal sin and a sever-
est form of misconduct impacting negatively the academic aura and the publicity 
(Berlinck, 2011).

In higher education and academic publishing, plagiarism is an ongoing and rising 
concern. To combat plagiarism, thorough educational initiatives by Institutions, rig-
orous policies, and application of detection technologies particularly anti-plagiarism 
software have been instituted to endorse and maintain the standards of innovation 
and morality across scholarly and innovative fields. But the practice of Online Social 
Networks such as X, LinkedIn, Research Gate, Google Scholar, etc., in academia to 
publish research, get a following to increase citations, broadening of collaborations, 
etc., have undoubtedly increased the plagiarism of content due to increased visibility 
of research. The more accessibility a research article/chapter has, its vulnerability of 
being copied increases.

The awareness and education regarding plagiarism and avoiding it at all levels 
requires continuous efforts and comprehensible policies that elucidate the forms of 
plagiarism and its potential consequences when found. The identification of pla-
giarism requires complex judgments and cannot be dependent on using detection 
software only. Establishment of clear and vivid policies by journal managements 
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and social work programs for skirmishing plagiarism is crucial. Constant education, 
careful development of coursework, incident tracking within institutions, and estab-
lishment of clear policies might help trim down plagiarism and advance the quality 
of professional writing (Drisko, 2023). According to Foltýnek, Meuschke, and Gipp 
(2019) detection of plagiarism requires the identification of plagiarism type that has 
been done. Two main forms of plagiarism can be identified as (1) inappropriate use 
of someone else’s words and (2) inappropriate use of someone else’s ideas. Both 
forms involve lack of acknowledgment to the author or source. They further explain 
that Idea plagiarism is presentation of someone else’s idea without proper citation of 
the source/author and year. In academic writing an idea or concept is written without 
proper in-text citation and linking it to the rest of the text and concluding it as your 
own is clearly plagiarism.

With the brisk advancement of information technology (IT), which offers expedi-
ent and immediate access to cosmic quantity of information, plagiarism has become 
much convenient. Information technology (IT) has considerably transformed the 
professional and academic milieu, mainly in relation to plagiarism. From one per-
spective, the explosion of digital content and effortlessness in information accessibil-
ity have made it trouble-free for researchers to copy and use someone’s work without 
proper acknowledgment. The availability of massive online resources, including 
research articles, books, papers, and multimedia, simultaneously with the aid of 
sophisticated search engines, assists in quick and a lot unchecked misuse of con-
tent. In his study Park (2017) discusses how effortlessly digital resource accessibility 
amplifies plagiarism among students. The study proposes that the accessibility of 
papers and online essays entices students to use content directly in their assignments 
lacking proper citation. Selwyn (2008) supports this leaning in his research where 
he shows that more than 60% of students confessed to plagiarizing once at the mini-
mum during their career, through Internet as their primary source of information.

The detection of plagiarism has been complicated by another major concern, i.e., 
the use of AI-generated text, which produces human-like manuscripts. A vast amount 
of research reflects that AI is being used in research and produces authentic scientific 
research papers, which has increased the deceitful academic and research output. In 
a research article published in Collonnaz (2024) it has been recorded that researchers 
establish that AI-generated abstracts may well deceive connoisseurs, stressing that 
robust plagiarism detection methods are required and also lucid guidelines on AI 
utilization in academic and research writing are required. Weber-Wulff et al. (2023) 
in their study reveal that existing AI-detection tools fail to detect rephrased or syn-
onym-replaced or reworded AI content, which leads to an elevated rate of false nega-
tives. This issue was further exacerbated during COVID-19 with increased shift to 
Online Learning and Assessments, where students were at ease to access, copy, and 
misuse the online resources. Plagiarism software used to check the originality during 
the period exposed a spike in educational dishonesty, compelled by the demands and 
challenges of distance learning (Eshet, 2024). On the whole, while IT has smoothed 
the development of new types of plagiarism, it has also prompted the design of 
sophisticated tools to spot and discourage such practices. Constant research and revi-
sion of policy are essential to maintain pace with these progressions and maintain 
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scholarly integrity (Peytcheva-Forsyth et al. 2018). Information Technology has also 
empowered institutions to fight plagiarism extra efficiency. Academic organizations 
have implemented sophisticated plagiarism detection software such as Copyscape, 
Turnitin, or Grammarly which are based on some complex algorithms to evaluate 
submitted manuscripts against broad web databases be it academic or general con-
tent, spotting similarities and probable occurrences of plagiarism. In addition, IT 
enables enhanced opportunities and facilitates consciousness and education about 
plagiarism through seminars, workshops, online tutorials, and other channels that 
educate about attribution and citation practices and ethical research practices. The 
research study conducted by Ison (2015) exposed that the use of plagiarism software 
not only supports grabbing the hold of plagiarists but also acts as a restriction since 
students conscious of the software’s potential are dubious to engage in fraudulent 
practices. Moreover, Heckler and Forde (2015) in their study draw attention to the 
efficacy of plagiarism detection software in recognizing copied content. The study 
verified that software like Turnitin have 95% efficiency in detecting the copied con-
tent, notably reducing the occurrence of plagiarism. Although IT has shaped novel 
avenues for plagiarism, it has also offered vigorous methodologies and tools to detect 
and avoid it, promoting a culture of honesty and originality in educational and profes-
sional bubble. In addition to this, educational institutions are facilitating IT to teach 
students about the significance of academic truthfulness. Sutherland-Smith (2008) 
in their study found that inclusive online plagiarism awareness tutorials and pro-
grams considerably reduce plagiarism occurrence. These programs educate students 
regarding appropriate citation methods and the fair use of information, endorsing a 
culture of integrity and reverence for intellectual property. Educational institutions 
are definitely at the forefront in the development and implementation of advanced 
plagiarism detection software/tools. In spite of their sophistication, this is also a fact 
that these tools struggle to accurately identify text generated by AI, mostly when it 
has been slightly changed.

11.2 � PLAGIARISM DETECTION: TYPOLOGIES

A typology is an important aspect to understand and configure a research unit and 
also aids in the communiqué of a procedure. Numerous researchers have proposed 
diverse typologies to elaborate plagiarism in academics. Alfikri and Purwarianti 
(2012) distinguished academic plagiarism as the partial replication of smaller manu-
script segments, presenting two types of paraphrasing that vary regarding whether 
the sentence formation modifies or whether translations occur.

Further Foltýnek, Meuschke, and Gipp (2019) presented the plagiarism topology 
as follows:

	 1.	Characters-preserving plagiarism
	 2.	Structural plagiarism
	 3.	Synonym substitution
	 4.	Technical disguise
	 5.	Syntax-preserving plagiarism
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	 6.	Semantics-preserving plagiarism
	 7.	 Idea-preserving plagiarism

Mozgovoy, Kakkonen, and Cosma (2010) presented a typology that consolidates 
other classifications into five forms of academic plagiarism: (1) Verbatim copying, 
(2) Hiding plagiarism instances by paraphrasing, (3) Technical tricks exploiting 
weaknesses of current plagiarism detection systems, (4) Deliberate inaccurate use 
of references, (5) Tough plagiarism. John Walker (1998) presented a typology from a 
plagiarist’s perspective, which is still accepted by current literature. Walker’s typol-
ogy characterizes between different types of plagiarism like Sham paraphrasing, 
Inadequate citation, Verbatim Copying, Recycling, ghostwriting, Purloining, etc. 
Velásquez and Taylor (2014) in their research categorized different forms of plagia-
rism. They placed plagiarism into two separate forms. One form contains technical 
disguise and verbatim copying, translation and paraphrasing, and categorized the 
conscious misuse of references as a separate form. Alzahrani, Salim, and Abraham 
(2012) distinguished plagiarism into two types:

	 1.	 Intelligent plagiarism and
	 2.	Literal plagiarism which includes modified and near copies while intelligent 

plagiarism encompasses summary, paraphrases, idea plagiarism, and trans-
lation. This type of typology was followed by Eisa, Salim, and Alzahrani 
(2015) in their research. Further many researchers/authors (Chong, 2013; 
Chowdhury, et al.2018; Hourrane & Benlahmar, 2016) approved the clas-
sification of idea plagiarism as a separate type of plagiarism.

Based on the literature, some important factors like the nature, purpose, and severity 
of content copying, plagiarism can be grouped into various typologies. 

	 1)	Incomplete Citation

Definition: Incomplete citation refers to a fabricated citation that is misleading, 
incomplete, or incorrect. This makes it difficult to trace the original source of infor-
mation (APA, 2020).

	 2)	Direct Plagiarism (Complete or Verbatim Plagiarism)

Definition: In this type of plagiarism an author copies an entire research work and 
presents it as his/her own. This form of plagiarism is considered to be the severest 
misconduct in the research arena (Roig, 2015).

	 3)	Paraphrasing Plagiarism

Definition: Rephrasing someone else’s work in your own words without proper 
acknowledgment and credit. The structure and ideas of the manuscript remain the 
same; only the word formation differs (Walker, 1998).
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	 4)	Self-Plagiarism

Definition: If an author/researcher reuses his previous work including assignments. 
Research articles that have been published or submitted without acknowledgment it 
is considered to be self-plagiarism.

	 5)	Accidental Plagiarism

Definition: Pecorari (2003) clarifies that if an author accidentally or unintentionally 
misses acknowledgment, citation, or paraphrasing of content it will be considered 
accidental plagiarism.

	 6)	Source-Based Plagiarism

Definition: It includes fabrication and falsification. Fabrication as the name implies 
refers to creating fake data or research sources and citing them as original. Falsification 
includes altering existing data or sources to mislead readers (Steneck, 2003).

	 7)	Patch Writing or Mosaic Plagiarism

Definition: Howard (1995) says that an unattributed copying or use of someone’s 
work and mixing it with one’s original content without interpretation and proper 
understanding is referred to as Mosaic Plagiarism.

	 8)	Secondary Source Plagiarism

Definition: The failure of an author to cite an original source and referencing from 
another work (Stern, 2007).

	 9)	Misleading Attribution

Definition: Misrepresenting an author’s particular work by incorrectly attributing 
his/her work to any other author or your own will be considered misleading attribu-
tion (Gasparyan. et. al., 2017).

	 10)	Collusion

Definition: This type of plagiarism happens in unauthorized research collabora-
tions, particularly on individual assignments or allowing one’s assignment to be cop-
ied by others (Park, 2017).

11.3 � APPROACHES TO UNCOVERING PLAGIARISM

The augmentation of the digital content and the ease of access to huge quantity 
of information available online, the probability for plagiarism has amplified to a 
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great extent. To spot, identify, and forestall this immoral practice, several plagiarism 
detection techniques and tools have been developed. Some of the techniques are 
discussed here.

11.3.1 �S yntactical/Semantic Scrutiny

In research manuscripts, paraphrased content can be a source of plagiarism. Here, 
external matching tools or techniques particularly semantic analysis scrutinize the 
denotation of the wording rather than just the terminology. The methods of semantic 
or syntactic scrutiny include natural language processing (NLP) in which parts 
of speech, sentence structure, word dependencies, etc. are analyzed to identify the 
text context; latent semantic analysis (LSA) based on a mathematical technique 
called singular value decomposition to identify copying/paraphrasing and Synonym 
Replacement Detection which employs some sophisticated natural language detec-
tion tools to detect the synonyms underlying the replaced words. The use of NLP 
technologies can evaluate content at different levels, from full texts to just phrases, 
detecting faint plagiarism occurrences such as rephrasing/rewording or the AI appli-
cation to rework the original documents. The detection of AI-generated content like 
ChatGPT lets precise identification of text created by analogous and parallel NLP 
models​ (Quidwai, Li, and Dube, 2023).

11.3.2 �T ext Matching Method

Being one of the most commonly used plagiarism detection techniques, it compares a 
specified document to an already existing document database to identify the similarity.

The chief procedures include fingerprinting, in which a fingerprint or hash is 
formed and then Winnowing Algorithm is used to spot the similarity.

	 1.	String Matching Algorithms include Rabin-Karp Algorithm and Knuth-
Morris-Pratt (KMP) Algorithm. These algorithms recognize precise or 
near-exact equivalents of word/phrase sequences.

	 2.	N-Gram Analysis: This technique breaks down the text into smaller units 
called n-grams (e.g., sequences of two or three words) and compares these 
units across documents. It can detect similarities even when the text has 
been slightly modified.

	 3.	Program Dependency Graph (PDG) Analysis, in which a graph created 
identifies the dependencies in a code which is a text document. The com-
parative similarities between these graphs can spot the copied content.

	 4.	Code Fingerprinting and Tokenization: It resembles the fingerprinting 
method but here tokens are created and then compared.

11.3.3  Database and Web Crawling Integration

The integration of academic databases of books, research articles, research notes, 
thesis and dissertations, and other web content with the plagiarism detection software 



227Spotting Plagiarism in Academic Social Networks

has to a greater extent helped to identify the unethical publishing of content. These 
tools have the ability to surf the databases on the internet and scan the latent sources 
of plagiarized content. The indexation and content in the databases of these tools are 
consistently updated and hence they ensure the new text/documents that are pub-
lished are being monitored and remain in check.

11.3.4 �L everaging Artificial Intelligence and Machine Learning

With the huge advancement of artificial intelligence (AI) and machine learning 
(ML), the recognition accuracy of plagiarized content has definitely improved. But 
with the increase in AI-generated content, detection of such material has turned out 
to be gradually more imperative. Novel detection systems now center of attention on 
distinguishing between manually-written and AI-generated wording, by means of 
sophisticated metrics like sensitivity and specificity. Several tools/software/applica-
tions have been developed that classify text based on AI-generated probability like 
Copy Leaks, OpenAI tools, GPTZero, etc. (Elkhatat, Elsaid, & Almeer, 2023).

11.3.5 � Hybrid Approaches

To improve the reporting and accuracy of plagiarism detection, countless contem-
porary plagiarism detection tools blend multiple methodologies. For instance, ini-
tially a plagiarism tool may apply text matching technique for primary detection for 
detection. Subsequently it may apply semantic analysis or linguistic fingerprinting 
for extensive scrutiny. These approaches can offer a more inclusive analysis and 
trim down the false positives. In artificial intelligence (AI), hybrid techniques that 
merge unsupervised preliminary training and supervised optimizing are excessively 
used to guide AI models that identify plagiarism. Because of their ability to polish 
or optimize to particular domains and content type, these models are flexible and 
predominantly successful OpenAI’s GPT models are an example (Ibrahim, 2023).

11.3.6 �L earning and Ethical Frameworks

To daunt and discourage the practice of plagiarism, special emphasis on moral edu-
cation and creation of academic circles that depress the practice along with tech-
nological remedies is important. This includes promotion of sense of participation, 
community among students, offering varied assessments, and enhancing feedback 
systems. These practices facilitate to address the core problem of plagiarism, par-
ticularly in distant learning where occurrences of academic fraud have spiked.

11.4 ACADEMIC SOCIAL NETWORK

Academic social networks are digital spaces designed exclusively for academi-
cians, researchers, and scholars to connect, work together, and share their research 
work. The aim of these networks is to ease research dissemination, promote aca-
demic teamwork, and enhance research visibility. These networks have become an 
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important part of researchers’ lives by connecting them across wide geographies and 
research areas. The key features of an academic social network are profile creation, 
sharing your own research, recommending the research work of others, networking 
and collaborating, and gauging your research impact. One of the popular ASNs is 
ResearchGate which is one of the largest networks of researchers where they con-
nect, share their research, collaborate on research projects, and indulge in discus-
sions. Some others are Mendeley, Zotero, Google Scholar, etc. The academic social 
networks benefit an academician or a researcher increasing his/her research visibility, 
providing a platform to enhance the collaborations. Through widely shared research, 
more accessibility options are available to an author and also these platforms pro-
vide a good opportunity for receiving feedback from peers. But there certainly have 
raised some grave considerations and concerns regarding its use. The peer-review or 
the quality check on these platforms is not considered meticulous which affects the 
research output quality. There are also some grave concerns regarding the privacy 
concerns of data and research and the bias of certain platforms toward the research-
ers. But Plagiarism and Intellectual Property Theft remains a concern. To curb the 
practice of Plagiarism, identification of users/researchers with similar activities/
interests can be traced and hence will lead to identification, behavior, and interactions 
of Community Networks that exhibit similar behavior in a research environment.

11.5 � SOCIAL NETWORK ANALYSIS

Social network analysis (SNA) is an integrated and methodological approach used 
to study social structures through the lens of network and graph theory. The main 
approach of using social network analysis is to focus on the relationships between 
individuals and groups, teams, and organizations (De Brún & McAuliffe, 2018). SNA 
allows exploration of the underlying structures of an organization or network pinpoint-
ing both informal and formal relationships that drive all the processes and outcomes 
(Wang, Yidong, et al. 2023). The social networks that are mostly visualized through 
SNA are social media platforms/networks, public health, marketing and business, com-
munity development, data science and technology, education, and research (Collonnaz 
et al., 2024; Sakamoto, 2021; Valdez et al., 2021). The sociogram, a graphical repre-
sentation of the connections between these social units, is one of the essential compo-
nents of an SNA. These sociograms provide a visual representation of the network’s 
size, composition, and characteristics. They can also produce a number of quantitative 
metrics that can be tracked over time (Hoe et al., 2019; , Wasserman & Faust, 1994).

11.5.1 � Key Characteristics of Social Network Analysis

Fundamentally SNA is characterized by:

	 1.	Nodes and Edges: Nodes represent entities, individuals within a network 
such as organizations, members, and institutions. Edges signify the rela-
tionships and interactions between the communities, members, institutions, 
and organizations.
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	 2.	Network Structure through Cohesion, Components, and Cliques: 
Cohesion defines the interconnection of the network and is measured in 
density and distance. A component is a subset of the network where all 
nodes are connected, either directly or indirectly. A clique is a subset where 
each node is directly connected to every other node, signifying dense sub-
groups in the network (Mailman School of Public Health).

	 3.	Centrality Measures: These are used to identify influential nodes within a 
network.

	 4.	Community Detection: Identification of clusters of communities within a 
network. The community detection highlights networks where nodes are 
densely connected to each other rather than the rest of the network.

	 5.	Visualization: Identification of patterns, relationships, and key players 
makes it significant for the representation of complex data.

	 6.	Multilevel Analysis: SNA can be conducted at various levels, micro (indi-
vidual), meso (group), and macro (entire network) levels. This multilevel 
approach is structured and allows for a comprehensive understanding of 
social structures, patterns, and dynamics across various contexts. Therefore, 
SNA offers a theoretical and methodological approach for identifying, ana-
lyzing, and visualizing network communities.

11.6 � NETWORK COMMUNITIES

Social Network Analysis consists of an essential part of revealing veiled structures 
within complex networks termed as Community detection. It aids in knowing the 
patterns, roles, and relationships within various kinds of networks like social, tech-
nological, etc. by revealing groups of densely connected nodes. Network communi-
ties are essentially defined as groups, communities, or modules inside a network. 
These represent collections of individuals with common behaviors or traits, such 
as social network circles or collaborators in an academic research context, and are 
essential research facets in various fields, including the biological sciences, social 
sciences, physical sciences, and computer science. Groups of nodes (individuals, 
organizations, or other entities) that are more closely connected to one another than 
to the rest of the network make community networks. Identification of communi-
ties within networks provides insight into their functionality and organization. The 
network communities are characterized by high internal connectivity, low external 
connectivity, and diversity in structure. Network Communities are clusters that are 
the fundamental aspect of research in various fields, including sciences, social sci-
ences, biology, and computer science.

In social network analysis, community detection is a fundamental technique 
that helps to identify members, groups, or individuals who interact and collaborate 
within a network, where nodes that signify individuals, entities, or documents are 
more compactly connected to each other than to the rest of the network. This pro-
cess aids in the identification of communities, formation of new networks and pat-
terns of relationships. Communities, in this context, characterize subgroups inside 
the wider network that show higher internal connectivity and have common patterns, 
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characteristics, and connections. Similarly, in biology, community network analysis 
is used to identify the functional organization of complex biological systems.

In social networks, relations between nodes habitually form clusters, representing 
groups with common goals, interests, or roles and purposes. Communities may sig-
nify research groups, professional networks, friendship circles, or any other setting 
where entities are bound significantly to one another than to outsiders. The identifi-
cation of these communities helps in the following:

•	 Comprehension of Group Dynamics: The detection of communities 
within a larger group helps to reveal the network structure unveiling the 
subgroups and their possible impact within a broader system.

•	 Detection of Anomalies: Community detection is very helpful for identifi-
cation of abnormal behaviors, or spotting irregular behavior, such as detect-
ing duplicitous activities in networks or doubtful forms or in plagiarism 
detection.

•	 Identification of Influencers: The identification of personal or professional 
communities in social media helps in locating the influencers or prominent 
entities who have a strong hold in a group and can influence opinions or 
behaviors.

•	 Resource Allocation Optimization: The identification of community net-
works helps in service delivery and resource distribution like in marketing 
where using these methods tailored interventions based on internal network 
structure can be offered.

For handling complex and large-scale data community detection algorithms are 
studied and developed in computer science. The exploration of community struc-
tures dates back to early sociological research (Hunt et al., 2012). The notable con-
tributions include the famous works of Stuart Rice in the 1920s whose analysis of 
political blocs was later studied by Robert Weiss and Eugene Jacobson in the 1950s. 
These studies led to the development and evolution of modern approaches to network 
analysis particularly detection of communities (Porter, 2015). Also, notable works 
of Girvan and Newman included development of modularity for the identification of 
community structures. Some characteristics of network communities are explained 
by Mynatt et al. (1998):

•	 Network Communities Are Technologically Mediated: Network 
Communities rely on technology for bridging spatial distances in con-
trast to historical forms of communication mediums among communities. 
This mediation of technology ensures social cohesion among communi-
ties, despite the vast geographical dispersion, fostering engagement and 
intersections.

•	 Network Communities Are Persistence: Network communities are 
resilient and endure over time, across users and contexts. The persistence 
ensures continuous interactions among communities. Persistence ensures 
mobilization of communication channels over time.
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•	 Multiple Interaction Styles: Network communities are defined by their 
capacity to provide various interaction styles. These communities function 
in such a style that enables both formal and informal discussions. This flex-
ibility allows members to communicate in different ways through direct or 
peripheral interactions.

•	 Real-Time Interaction: Network communities are characterized by their 
capability for real-time interaction, which is vital for enhancing a dynamic 
social environment. This immediacy allows users to engage in interactions 
and activities that mimic face-to-face interactions, enhancing the overall 
experience of community engagement.

•	 Multiple User Interaction: Network Communities allow multi-user partic-
ipation. This flexibility allows private interactions and social engagements, 
creating an expandable and functional space for community interactions.

Therefore network communities can help understand and examine the dynamics and 
structure of these communities can help us understand the interactions (Motschnig 
et al., 2021) which is important to understand the identification of similar patterns 
of behavior such as plagiarism or fraudulent activities, identifying influential nodes 
(like main miscreants) and also spotting abnormalities. Whether using sophisticated 
deep learning techniques or more conventional clustering algorithms, community 
identification methodologies aim to accurately locate these groups and examine their 
connections and stimuli within the larger network. )As an example, researchers use 
community detection techniques to determine how social media partnerships arise 
both with and without organizations, how social media support groups function, or 
how information/misinformation is displayed on online social media platforms.

11.6.1 � Key Characteristics of Communities

Network communities are defined primarily by density of connections:

•	 Internal Connectivity: The nodes within a community are extremely inter-
connected, which means that the edges of a community have significantly 
higher connections between nodes in a same size random graph.

•	 External Sparsity: The nodes in this scenario have reduced connections, 
signifying that members of different communities interact less frequently.

11.6.2 �C ommunity Detection Methods

In a diversity of network structures, numerous algorithms have been established to 
spot communities. These algorithms often aim to maximize modularity, a measure 
that quantifies the strength of division of a network into communities (Mauro et al., 
2014). Community detection algorithm can be used to identify the contextual mean-
ing of the text. If the text is modeled as a complex network and community detection 
algorithms are applied, then the plagiarized content can be identified and flagged 
along with the source if the member has even changed the wording of the content 
(Rathin Raj & Ramya, 2023).
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They further discuss the methods as given below:
	 1.	Louvain Method: The most extensively used algorithms for community 

detection is the Louvain method. It intends to enhance modularity, a met-
ric that is used to measure the concentration of links inside communities 
compared to links between communities. This method is particularly effi-
cient for large networks and can handle networks with millions of nodes. It 
works in two phases:
•	 Modularity Maximization: The modularity score at each step 

is aimed to be maximized in this phase by grouping nodes into 
communities.

•	 Hierarchical Clustering: Once the community structure is estab-
lished, the algorithm builds a hierarchical representation of the net-
work, further refining community boundaries.

•	 The community structure is established in the first phase, which acts 
a base for the algorithm to shape a hierarchical representation of the 
network, further filtering community boundaries.

	 2.	Label Propagation Algorithm (LPA): LPA is a quick and simple algo-
rithm for community detection. Every node in the network is allotted a 
label, which is circulated to its fellow nodes. Slowly, nodes accept the most 
recurrent label between their neighbors, following groups of nodes sharing 
the similar label. While computationally competent, LPA does not continu-
ously yield the best community detection outcomes, and the product may be 
contingent on the preliminary labeling.

	 3.	Girvan–Newman Algorithm: The Girvan–Newman algorithm considers 
high betweenness centrality to spot the communities by gradually remov-
ing edges. Betweenness centrality is a graph theory measure that specifies 
how significant a node is in a network by gauging how often it appears on 
the shortest paths between other nodes. It measures the number of unswerv-
ing paths that pass over a given edge. By eliminating edges that join dif-
ferent communities, the link progressively splits into discrete clusters. This 
method is computationally affluent and is more appropriate for minor to 
medium-sized networks (Barthelemy, 2004).

	 4.	Clique Percolation Method (CPM): CPM focuses on finding k-cliques, or 
complete subgraphs of k nodes, that share edges. Communities are detected 
by identifying overlapping cliques in the network, where nodes are part 
of multiple cliques. This method is especially useful in networks where 
community structures overlap, such as in social and biological networks 
(Chang, Gamage, & Yu, 2024).

	 5.	Spectral Clustering: The eigenvectors derived from the Laplacian matrix 
of a network are used here to detect the communities. The Laplacian matrix 
distinguishes the graph structure, and its eigenvectors are applied to divide 
the network into groups. This approach is effective in detection of well-
bound communities and is frequently employed in networks where com-
munities are not linearly divisible.
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11.7 � CITATION NETWORK

The analysis of citation networks can also reveal plagiarism among citing docu-
ments. A document citing the same documents can potentially reveal a pattern that 
the content is plagiarized. If the different patterns of citation networks are leveraged 
by different modeling techniques, they can possibly identify plagiarism in academic 
networks through research papers. 

•	 Feature-Based Detection by Neural Networks: The features that neural 
network classifiers extract from the text are trainable for detection of plagia-
rism (Engel et al. 2017).. With the identification and detention of similarity 
features that capture syntactic, lexical, semantic aspects, and neural net-
works can learn to contrast between original and plagiarized text (Butakov 
& Scherbinin, 2009; El-Rashidy et al., 2022). Each of the approaches can be 
used individually for assessing and measuring plagiarism (Engel et al., 2017).

In general, community network research is essential to expanding our knowledge 
of the complex relationships and inter-dependencies across many systems, allow-
ing scholars to make significant discoveries and provide creative solutions spanning 
several academic fields.

11.8 � APPLICATIONS OF COMMUNITY DETECTION

The most common applications of community detection in social networks are dis-
cussed here:

	 1.	Telecommunication and Infrastructure Networks: Community detec-
tion is pragmatically used in communication networks between users like 
emails, chats, or telephone calls. The identification of clusters of frequently 
interacting users aids telecom companies to augment their networks, detect 
different patterns of communication, offer tailored services, or spot the 
occurrence of fraud or system mishandling.

	 2.	Social media and Online Platforms: Social Network Platforms like X, 
Instagram, Facebook, and LinkedIn use community detection to cluster 
users based on their communications, interests, and activities. Community 
detection helps corporations comprehend social constructions, identify 
vital influencers, and provide specific types of content to target user groups.

	 3.	Plagiarism Detection: As discussed earlier, in plagiarism detection, commu-
nity detection aids in identifying sets of documents that are extremely similar, 
signifying probable cases of replication or shared content. By bunching docu-
ments into communities, plagiarism can be detected across various sources.

	 4.	Fraud Detection: Community detection is applied to recognize groups of 
entities like individuals and businesses that interact recurrently. This can 
support in catching scam rings, sensing insider transactions, or identifying 
illegal financial dealings.
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11.9 � CHALLENGES IN COMMUNITY DETECTION

•	 Dynamic Networks: The offline social networks and online social net-
works both are dynamic in nature and tend to evolve drastically over-time. 
The network changes quite frequently with the formation, merging, or dis-
solving of communities. This poses a great challenge to apply practical 
community detection methods.

•	 Overlapping Communities: In numerous real-world networks, nodes 
(individual, researcher, or group) may represent to multiple communities. 
For example, an individual may belong to a research group and also a friend 
group. Most of the algorithms for community detection cannot gauge this 
intersection except a few like CPM algorithm which can handle this overlap.

•	 Large-Scale Networks: The massive base of Social Media Platforms con-
sisting of billions of nodes and edges poses a great challenge for Scaling 
community detection algorithms. Here compromising computational effi-
ciency and accuracy remains a crucial challenge.

11.10 � COMMUNITY NETWORK APPROACHES 
TO PLAGIARISM DETECTION

The integration of social network information, web data, and advanced semantic 
visualization improves plagiarism detection (Zrnec & Lavbič, 2018). The analysis 
of social media connections and networks between authors and documents and the 
patterns of plagiarism are detectable. The combination of web data, social media 
information, and semantic visualization increases the efficiency of plagiarism detec-
tion (Alsallal et al., 2013; Zrnecn & Lavbič, 2018). The identification of sharing pat-
tern, reputation of the member, and content similarity analysis are also fundamental 
in this context. The application of community network identification for plagiarism 
detection within social networks comprises harnessing the data regarding the behav-
ioral patterns of users, their communications, and their structural relationships. This 
can be achieved by:

11.10.1 �E xploring Community Detection in Social Networks

Plagiarism detection in research collaborations can be detected profoundly by 
Community Network Analysis. The identification of clusters having the same content, 
tracking the flow of information, identifying the anomalies, and lastly recognition of 
the collaborative works a versatile approach may be developed through community 
networks to trace and detect plagiarism efforts. With amalgamation of traditional 
detection tools of plagiarism these methodologies can provide a robust mechanism 
to precise identification of the content that has been misused or mis-presented lead-
ing to plagiarism. By identifying clusters that interact and work together frequently 
the patterns of content sharing among them can be detected and the occurrence of 
plagiarism might be spotted. Torkaman et al. (2023) and Hamed, Rebhi, and Saoud 
(2024) in their study draw attention to various community detection techniques that 
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can help in identification of plagiarized content. An intricate cognition into com-
munity structures for spotting plagiarism can be done by involving deep learning 
approaches that represent multifaceted relations between the researchers or authors. 
Further Hamed, Rebhi, and Saoud (2024) suggest the use of sophisticated multilayer 
networks that involve multiple types of interactions among consumers like collabo-
rations, sharing content or friendships. As per them this method helps in plagiarism 
detection by presenting holistic view of such community networks and enhances the 
accuracy for detecting such network structures. Some studies suggest the applica-
tion of spectral clustering or modularity optimization to identify communities with 
huge datasets. For instance, the assignments submitted by students in a class form 
an interconnected community owing to the high similarity in their text, which can 
point out the copying or illicit replicating from a common source (Motsching, et 
al., 2021; Vieira, Xavier & Evsukoff, 2020). Brzozowski, Siudem, and Gagolewski 
(2023) investigate the use of graph representation and measures of node similar-
ity to detect the network communities which help to enumerate the node similarity 
predicated on the interactions and communications contributing another platform for 
spotting potential plagiarism through community structures. In nutshell, utilizing 
and employing different community detection techniques in academic social net-
works endows with a robust frame to recognize and address plagiarism.

11.10.2 �M ethodology for Plagiarism Detection

	 1.	Collection of Data and Pre-processing: The researchers must in the first 
step collect the data which needs to be checked for plagiarism from the 
Social Networks. This data can be in the form of interaction (comments, 
likes, or shares), textual (shared posts and updates, research interests, par-
ticipation in discussion, collaborations, citations), or metadata. The col-
lected data then must be processed to remove noise and standardize it for 
study. This could involve consistent formatting, removing stop words and 
ensuring text normalization.

	 2.	Data Representation: After processing the data, each dataset like a 
researcher or paper must be represented by a node. The between nodes edge 
formation must be established based on factors like similarity between texts 
and interactions between the researchers. Establish edges based on interac-
tions studies suggest that techniques like Jaccard Index, Cosine similarity, 
Jaccard index, or TF-IDF can be utilized for this purpose.

	 3.	Application of Community Detection Algorithms: Numerous methods 
have been developed in due course of time by scientists and researchers for 
community detection. Three main methods are discussed here:
•	 Deep Learning Approach: This involves the application of advanced 

and sophisticated neural network architecture to gauge the purpose-
ful node representation and their relations in a graph. Deep learning 
approaches mostly comprise graph neural networks (GNNs), deep 
graph convolutional networks (DGCNs), graph autoencoders (GAEs), 
and graph attention networks (GATs). By the application of these 
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techniques, researchers can efficiently identify and evaluate commu-
nities within complex networks. In particular, graph convolutional 
networks (GCNs) model is capable of learning complex network rela-
tionships and structures to spot communities more effectively.

•	 Modularity Optimization: The most basic representation of modular 
optimization in plagiarism detection is given below:

| Text 
Preprocessing |

| - Tokenization | | - Stemming | | - Stop Words |

| Similarity 
Detection|

| - String 
Matching |

| - Cosine 
Similarity|

| - Jaccard 
Similarity|

|Semantic 
Analysis|

|-Word 
Embeddings |

| -Contextual 
Embeddings|

| -Paraphrase 
Detection |

| Citation 
Analysis |

| - Citation 
Matching|

| - Reference 
Network 
Analysis |

​

| Machine 
Learning |

| - Supervised 
Learning |

| - Deep 
Learning |

​

| Post-Processing | | - Result 
Aggregation |

| - Visualization | ​

This method allows for all the components to be designed and optimized separately, 
enhancing the total efficiency of the plagiarism detection structure.

Spectral Clustering: Spectral clustering is a dominant technique applied in vari-
ous areas of research, including plagiarism detection, to recognize communities or 
clusters in spectrum data given by eigenvalues of a similarity matrix. The basic rep-
resentation is:

•	 Text Representation
•	 TF-IDF
•	 Word Embeddings

•	 Similarity Matrix
•	 Cosine Similarity
•	 Jaccard Similarity

•	 Laplacian Matrix
•	 Eigen Value Decomposition
•	 Clustering Algorithm

•	 -k-means
•	 Clusters (Potentially Plagiarized Documents)

11.10.3 �C ase Study and Applications

	 1.	Analysis of Academic Social Networks: The analysis of academic social 
platforms can aid in spotting potential plagiarism by revealing the patterns 
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of apprehensive collaboration or abnormal similarities in research produc-
tivity. For instance, the identification of clusters that frequently corroborate 
and cross-cite can be a focal point to map the community network and 
detect potential plagiarism. Clusters that display characteristics for instance 
excessively high collaborations and co-authorship, particularly across an 
extensive sort of themes, may necessitate further inquiry. This may in the 
future reveal high rate of content recycling or collusion of research out-
put. Honorary authorships and ghost authorships can also be uncovered. 
Overlapping of publications can also be detected. Identification of central 
authors who connect multiple groups, potentially coordinating plagiarism 
efforts is another breakthrough. Plagiarism detection software like iThenti-
cate, Turnitin, etc. can be used to detect the similarity index of the research 
publications across and in-between the research groups or we may call them 
clusters. The citation behavior of such clusters can also to a greater extent 
reveal the potential case of plagiarism. Further, “Papermill operation” can 
be detected in clusters if the authors have rapid successive publications. 
Whistle-blowing and complaints/news from editors, ethical boards, and 
journals can also provide additional evidence. By analysis of the network 
data of such clusters, advanced Machine Learning Standards can qualify the 
occurrence of plagiarism like phrase frequency in text, collaborations, and 
citing patterns. For illustration, Eshet (2024) and Zrnec and Dejan (2017) 
in their study reveal that data from content analysis and social networks 
can be integrated into the system called social plagiarism detection frame-
work (SPDF) to envisage the associations between suspected plagiarists. 
This method can discover communities where the chances of plagiarism 
are high by assessing both direct and indirect relationships, like common 
co-authors or frequent communications on academic social platforms. Such 
frameworks have been revealed to considerably improve the precision and 
effectiveness of plagiarism exposure, reducing the probability of false posi-
tives or negatives.

	 2.	Social Media Platforms: Uncovering communities in networks like Social 
Media Platforms (X, Instagram, Facebook) have the ability to identify the 
clusters of users who recurrently share alike content or posts, signifying 
probable content stealing or coordinated copying campaigns. The careful 
monitoring of posts that are widespread can help in identifying the original 
creators and control the further publishing or reposting on these platforms 
hence containing plagiarized content.

11.11 � CONCLUSION

Community network identification endows us with a resilient framework for identi-
fying plagiarism within social networks by leveraging the behavioral and structural 
approach of user communications, relations, and similarities in content. The iden-
tification and mitigation of plagiarism can be efficiently done by utilizing prompt 
content analysis and community detection algorithms, hence preserving the reliability 

techniques, researchers can efficiently identify and evaluate commu-
nities within complex networks. In particular, graph convolutional 
networks (GCNs) model is capable of learning complex network rela-
tionships and structures to spot communities more effectively.

•	 Modularity Optimization: The most basic representation of modular 
optimization in plagiarism detection is given below:

| Text 
Preprocessing |

| - Tokenization | | - Stemming | | - Stop Words |

| Similarity 
Detection|

| - String 
Matching |

| - Cosine 
Similarity|

| - Jaccard 
Similarity|

|Semantic 
Analysis|

|-Word 
Embeddings |

| -Contextual 
Embeddings|

| -Paraphrase 
Detection |

| Citation 
Analysis |

| - Citation 
Matching|

| - Reference 
Network 
Analysis |

​

| Machine 
Learning |

| - Supervised 
Learning |

| - Deep 
Learning |

​

| Post-Processing | | - Result 
Aggregation |

| - Visualization | ​

This method allows for all the components to be designed and optimized separately, 
enhancing the total efficiency of the plagiarism detection structure.

Spectral Clustering: Spectral clustering is a dominant technique applied in vari-
ous areas of research, including plagiarism detection, to recognize communities or 
clusters in spectrum data given by eigenvalues of a similarity matrix. The basic rep-
resentation is:

•	 Text Representation
•	 TF-IDF
•	 Word Embeddings

•	 Similarity Matrix
•	 Cosine Similarity
•	 Jaccard Similarity

•	 Laplacian Matrix
•	 Eigen Value Decomposition
•	 Clustering Algorithm

•	 -k-means
•	 Clusters (Potentially Plagiarized Documents)

11.10.3 �C ase Study and Applications

	 1.	Analysis of Academic Social Networks: The analysis of academic social 
platforms can aid in spotting potential plagiarism by revealing the patterns 
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of research and academic output. The identification of plagiarism within academic 
social networks through community network analysis is a vigorous approach that 
surpasses traditional plagiarism detection methods, presenting an extra nuanced and 
inclusive interpretation of how immoral practices can reproduce within academia. By 
focusing on the interaction and relations between the clusters and communities that 
have a common research milieu investigators besides revealing individual plagiarism 
incidents can also highlight the widespread trends that signify institutional issues. 
The potency of this framework lies in its capability to contextualize apprehensive 
actions within the bigger network of academic collaborations. The reimbursement of 
using community network identification in plagiarism discovery is lucid and clear, but 
these methods also bring forth some grave concerns regarding the practical and ethi-
cal considerations. The trust in network data means that the privacy of users/people/
entities under study must be cautiously protected. The unjust allegations due to wrong 
interpretations of network blueprints must be refrained from. Moreover, since the net-
work data varies geographically and disciplinary, the efficacy is reliant on the accu-
racy and quality of the network data. To summarize, Community Network Analysis 
can offer a comprehensive development in plagiarism detection in academic social 
networks to fight academic fraud and misconduct. With the evolution in academia and 
overhaul of digital availability and exploitation of online content, the credence of such 
cutting-edge and advanced techniques will continue to evolve. It is the responsibility 
of the research centers and institutions to refine such technologies, complementary 
appropriate and vigorous detection models with the ethical concerns that are raised 
with scrutinizing complex social networks (Eshet, 2024; Zrnec and Dejan, 2017).

11.12 � FUTURE RESEARCH DIRECTIONS

The future research may include:

•	 Focus to enhance and develop social network analysis with machine learn-
ing and artificial intelligence (AI) techniques which are capable of analyz-
ing bigger multifaceted datasets like academic databases, social media, and 
citation networks.

•	 Ethical implications to be researched while using data derived from social 
media.

•	 Cross-disciplinary research applications of such techniques like non-aca-
demic sectors, law, business, etc.

•	 Additional studies to improve the accuracy of these approaches, dipping 
false positives and enhancing the trustworthiness of community detection 
for identification of collaborative efforts of plagiarism in academic circles.
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